Advertisement

Chemistry of Natural Compounds

, Volume 54, Issue 5, pp 864–868 | Cite as

Synthesis and Anticoagulant Bioactivity of Heterocyclic Derivatives of Resveratrol

  • H. J. Yang
  • Y. J. Ren
  • C. Du
  • L. Jin
  • R. Li
  • N. Xie
Article
  • 34 Downloads

Twenty-five resveratrol derivatives were synthesized, among which eight compounds have not yet been reported. The target compounds were evaluated for thrombin inhibitory activity in vitro (IC50). The results showed that four compounds displayed a better thrombin inhibitory activity with IC50 values from 10.43 to 18.31 μM, better than resveratrol (25.87 μM). The R3 position of resveratrol was modified by heterocyclic rings containing oxygen and sulfur, which could increase the anticoagulant activity of resveratrol.

Keywords

resveratrol lipophilic derivatives heterocyclic rings anticoagulant activity thrombin 

Notes

Acknowledgment

This work is financed by Shanghai College Students Innovative Projects (Nos. SH2016016 and SH2016018).

References

  1. 1.
    T. I. Siddiqui, K. S. A. Kumar, and D. K. Dikshit, Curr. Med. Chem., 20, 2779 (2013).CrossRefGoogle Scholar
  2. 2.
    C. C. Udenigwe, V. R. Ramprasath, R. E. Aluko, and P. J. Jones, Nutr. Rev., 66, 445 (2008).CrossRefGoogle Scholar
  3. 3.
    S. Bradamante, L. Barenghi, and A. Villa, Drug Rev., 22, 169 (2004).Google Scholar
  4. 4.
    N. Cardullo, C. Spatafora, N. Musso, V. Barresi, D. Condorelli, and C. Tringali, J. Nat. Prod., 78, 2675 (2015).CrossRefGoogle Scholar
  5. 5.
    N. Singh, M. Agrawal, and S. Dore, ACS Chem. Neurosci., 4, 1151 (2013).CrossRefGoogle Scholar
  6. 6.
    Z. R. Wang, J. G. Zou, K. J. Cao, T. C. Hsieh, Y. Z. Huang, and J. M. Wu, Int. J. Mol. Med., 16, 533 (2005).PubMedGoogle Scholar
  7. 7.
    M. E. Juan, M. P. Vinardell, and J. M. Planas, J. Nutr., 132, 257 (2002).CrossRefGoogle Scholar
  8. 8.
    L. H. Opie and S. Lecour, Eur. Heart J., 28, 1683 (2007).CrossRefGoogle Scholar
  9. 9.
    C. Du, Y. J. Ren, Q. W. Wang, and L. Jin, Chin. J. Org. Chem., 33, 1279 (2013).CrossRefGoogle Scholar
  10. 10.
    H. Tani, S. Hikami, S. Iizuna, M. Yoshimatsu, T. Asama, H. Ota, Y. Kimura, T. Tatefuji, K. Hashimoto, and K. Higaki, J. Agric. Food Chem., 62, 1999 (2014).CrossRefGoogle Scholar
  11. 11.
    S. He and X. J. Yan, Curr. Med. Chem., 20, 1005 (2013).PubMedGoogle Scholar
  12. 12.
    E. Quezada, G. Delogu, C. Picciau, L. Santana, G. Podda, F. Borges, V. Garcia-Morales, D. Vina, and F. Orallo, Molecules, 15, 270 (2010).CrossRefGoogle Scholar
  13. 13.
    M. Azzolini, A. Mattarei, M. L. Spina, E. Marotta, M. Zoratti, C. Paradisi, and L. Biasutto, Mol. Pharm., 12, 3441 (2015).CrossRefGoogle Scholar
  14. 14.
    J. Zuchowski, L. Pecio, and E. Reszczynska, Helv. Chim. Acta, 99, 674 (2016).CrossRefGoogle Scholar
  15. 15.
    P. Majumdar, A. Pati, M. Patra, R. K. Behera, and A. K. Behera, Chem. Rev., 114, 2942 (2014).CrossRefGoogle Scholar
  16. 16.
    B. Eftekhari-Sis, M. Zirak, and A.Akbari, Chem. Rev., 113, 2958 (2013).CrossRefGoogle Scholar
  17. 17.
    L. Jin, Y. J. Ren, and C. Du, Chem. Nat. Compd., 51, 652 (2015).CrossRefGoogle Scholar
  18. 18.
    Y. Lu, B. Yu, H. M. Dong, and T. Hong, Patent CN 102126993 (2011).Google Scholar
  19. 19.
    X. H. Chen, X. C. Dong, Z. F. Gao, and X. J. Sun, Chem. Reagents, 34, 6 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • H. J. Yang
    • 1
  • Y. J. Ren
    • 1
    • 2
  • C. Du
    • 1
  • L. Jin
    • 1
  • R. Li
    • 1
  • N. Xie
    • 1
  1. 1.College of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghaiP. R. China
  2. 2.Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiP. R. China

Personalised recommendations