Advertisement

Identification of Isoflavonoids in Wood Residue from Swartzia laevicarpa, Dipteryx odorata, and Andira parviflora

  • M. G. Garcia
  • C. C. Nascimento
  • A. G. Ferreira
  • M. P. Lima
Article

The industrial procesing of wood generates large amounts of residues that should be adequately managed. We identify methods to gain value wood rejects through phytochemical studies in three species of Fabaceae. Eight isoflavonoids were identified: 3′-hydroxy-7,8,4′,5′-tetramethoxypterocarpan from Swartzia laevicarpa; 8-O-methylretusin, cladrastin, 7,3′-dihydroxy-8,4′-dimethoxyisoflavone, and novel 7,3′-dihydroxy-5,6,4′trimethoxyisoflavone from Dipteryx odorata. In residues from Andira parviflora were identified genistein, biochanin A and 7,5′,6′-trihydroxy-4′-methoxyisoflavan. These compounds explain the natural resistance of these three timber species to xylophogous fungi.

Keywords

wood residues Fabaceae phytoalexins NMR 

Notes

Acknowledgment

The authors are grateful to the Fundacao de Amparo a Pesquisa do Estado do Amazonas (FAPEAM) for financial support.

References

  1. 1.
    C. C. Nascimento, M. P. Lima, M. M. Brasil, R. D. Araujo, and E. V. C. M. Paula, in: Desvendando as Fronteiras do Conhecimento na Regiao Amazonica do Alto Rio Negro, Ed. INPA, Manaus, 2012, pp. 69–84.Google Scholar
  2. 2.
    G. M. Couto, A. L. A. Dessimoni, M. L. Bianchi, D. M. Perigolo, and P. F. Trugilho, Cienc. Agrotec., 36, 69 (2012).CrossRefGoogle Scholar
  3. 3.
    C. S. Campos and M. C. N. Andrade, Acta Amaz., 41, 1 (2011).CrossRefGoogle Scholar
  4. 4.
    W. Hayasida, A. S. Sousa, M. P. Lima, C. C. Nascimento, and A. G. Ferreira, Acta Amaz., 38, 749 (2008). 5. W. Hayasida, A. S. Sousa, M. P. Lima, C. C. Nascimento, and A. G. Ferreira, Acta Amaz., 41, 285 (2011).Google Scholar
  5. 5.
    A. N. Oliveira and I. L. Amaral, Acta Amaz., 35, 1 (2005).CrossRefGoogle Scholar
  6. 6.
    J. A. S. Zuanazzi and J. A. Montanha, in: Farmacognosia: da Planta ao Medicamento, 5nd ed. UFSC, Porto Alegre, Florianopolis, 1999, pp. 489–516.Google Scholar
  7. 7.
    R. J. Grayer and J. B. Harborne, Phytochemistry, 37, 19 (1994).CrossRefGoogle Scholar
  8. 8.
    R. Braz-Filho, M. P. L. De Moraes, and O. R. Gottlieb, Phytochemistry, 19, 2003 (1980).CrossRefGoogle Scholar
  9. 9.
    R. Y. Yang, Y. S. Lan, Z. J. Huang, C. L. Shao, H. Liang, Z. F. Chen, and J. Li, Chem. Nat. Compd., 48, 674 (2012).CrossRefGoogle Scholar
  10. 10.
    T. Hayashi and R. H. Thomson, Phytochemistry, 13, 1943 (1974).CrossRefGoogle Scholar
  11. 11.
    L. S. M. Velozo, B. P. Da Silva, E. M. B. Da Silva, and J. P. Parente, Fitoterapia, 70, 532 (1999).CrossRefGoogle Scholar
  12. 12.
    A. J. Demuner, L. C. A. Barbosa, J. C. Nascimento, and J. J. Vieira, Quim. Nova, 26, 335 (2003).CrossRefGoogle Scholar
  13. 13.
    S. A. Santos, M. G. Carvalho, and R. Braz-Filho, J. Braz. Chem. Soc., 6, 349 (1995).CrossRefGoogle Scholar
  14. 14.
    T. Imai, S. Inoue, N. O. Y. Matsushita, R. Suzuki, M. Sakurai, H. Courbaril, A. Lecointei, J. M. H. Jesus, S. K. Ozaki, Z. Finger, and K. Fukushima, JWRS, 54, 470 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. G. Garcia
    • 1
  • C. C. Nascimento
    • 1
  • A. G. Ferreira
    • 2
  • M. P. Lima
    • 1
  1. 1.Coordenacao Tecnologia e InovacaoInstituto Nacional de Pesquisas da AmazoniaManausBrazil
  2. 2.Departamento de QuimicaUniversidade Federal de Sao CarlosSao CarlosBrazil

Personalised recommendations