Advertisement

Chemistry of Natural Compounds

, Volume 49, Issue 1, pp 1–7 | Cite as

6″-Galloylpicein and other phenolic compounds from Arctostaphylos uva-ursi

  • D. N. OlennikovEmail author
  • G. V. Chekhirova
Article

Phenolic compounds from leafy shoots of A. uva-ursi (Ericaceae) were studied. The new phenolic glycoside 6″-galloylpicein and 40 known compounds were isolated. Roots of A. uva-ursi afforded 16 compounds. A C-glycoside of bergenin was found for the first time in the family Ericaceae. The dominant components of A. uva-ursi leaves according to HPLC were arbutin, (+)-catechin, and corilagin; of stems, picein and (+)-gallocatechingallate; of roots, (–)-epicatechin, (–)-epicatechingallate, and (+)-catechin.

Keywords

Arctostaphylos uva-ursi Ericaceae 6″-galloylpicein phenolic glycosides catechins tannins HPLC 

Notes

Acknowledgment

The work was supported financially by the SB RAS Project “Centers of New Medical Technologies.”

References

  1. 1.
    M. D. Mashkovskii, Drugs [in Russian], Novaya Volna, Moscow, 2008, 1206 pp.Google Scholar
  2. 2.
    Tibetan Medicine in Buryatiya [in Russian], Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2008, 324 pp.Google Scholar
  3. 3.
    G. Britton and E. Haslam, J. Chem. Soc., 7312 (1965).Google Scholar
  4. 4.
    K. E. Denford, Experientia, 29, 939 (1973).CrossRefGoogle Scholar
  5. 5.
    A. Saleem, C. S. Harris, M. Asim, A. Cuerrier, L. Martineau, P. S. Haddad, and J. T. Arnason, Phytochem. Anal., 21, 328 (2010).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Caligiani, G. Malavasi, G. Palla, A. Merseglia, M. Tognolini, and R. Bruni, Food Chem., 136, 735 (2013).PubMedCrossRefGoogle Scholar
  7. 7.
    D. N. Olennikov and A. V. Nazarova, Chem. Nat. Comp., 45, 702 (2009).CrossRefGoogle Scholar
  8. 8.
    I. Salasoo, Biochem. Syst. Ecol., 17, 381 (1989).CrossRefGoogle Scholar
  9. 9.
    N. Radulovic, P. Blagojevic, and R. Palic, Molecules, 15, 6168 (2010).PubMedCrossRefGoogle Scholar
  10. 10.
    L. Jahodar, I. Kolb, and I. Leifertova, Pharmazie, 36, 294 (1981).Google Scholar
  11. 11.
    Drugs Based on Plant Resources of the Baikal Region [in Russian], Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2008, 93 pp.Google Scholar
  12. 12.
    H. Thieme and H. J. Winkler, Pharmazie, 26, 419 (1971).PubMedGoogle Scholar
  13. 13.
    K. Matsuo, M. Kobayashi, Y. Takuno, H. Kuwajima, H. Ito, and T. Yoshida, Yakugaku Zasshi, 117, 1028 (1997).PubMedGoogle Scholar
  14. 14.
    R. B. Pegg, A. Rybarczyk, and R. Amarowicz, Pol. J. Food Nutr. Sci., 58, 485 (2008).Google Scholar
  15. 15.
    C. Achtardjieff, Pharmazie, 1, 59 (1966).Google Scholar
  16. 16.
    E. Dombrowicz, R. Zadernowski, and L. Swiatek, Pharmazie, 46, 960 (1991).Google Scholar
  17. 17.
    M. Veit, I. Van Rensen, J. Kirch, H. Geiger, and F.-C. Czygan, Planta Med., 58, A687 (1992).CrossRefGoogle Scholar
  18. 18.
    D. N. Olennikov and V. V. Partilkhaev, Chem. Nat. Comp., 48, 950 (2012).Google Scholar
  19. 19.
    N. B. Perry, M. H. Benn, L. N. Foster, A. Routledge, and R. T .Weavers, Phytochemistry, 42, 453 (1996).PubMedCrossRefGoogle Scholar
  20. 20.
    D. N. Olennikov, L. M. Tankhaeva, and S. V. Agafonova, Appl. Biochem. Microbiol., 47, 419 (2011).CrossRefGoogle Scholar
  21. 21.
    T. Yoshida, T. Hatano, T. Okuda, M. U. Memon, T. Shingu, and K. Inoue, Chem. Pharm. Bull., 32, 1790 (1984).CrossRefGoogle Scholar
  22. 22.
    C. Ma, B. Li, Q. Xu, and G. Zhang, Chin. J. Appl. Environ. Biol., 12, 487 (2006).Google Scholar
  23. 23.
    M. Hiroaki, Chem. Pharm. Bull., 14, 877 (1966).CrossRefGoogle Scholar
  24. 24.
    T. Yoshida, T. Okuda, T. Koga, and N. Noh, Chem. Pharm. Bull., 30, 2655 (1982).CrossRefGoogle Scholar
  25. 25.
    V. A. Kurkin, Chem. Nat. Comp., 39, 123 (2003).CrossRefGoogle Scholar
  26. 26.
    V. M. Malikov and M. P. Yuldashev, Chem. Nat. Comp., 38, 358, 473 (2002).CrossRefGoogle Scholar
  27. 27.
    S. Kadota, Y. Takamori, K. N. Nyein, T. Kikuchi, K. Tanaka, and H. Ekimoto, Chem. Pharm. Bull., 38, 2687 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    D. N. Olennikov and V. V. Partilkhaev, J. Planar Chromatogr., 25, 30 (2012).CrossRefGoogle Scholar
  29. 29.
    D. N. Olennikov, L. M. Tankhaeva, V. V. Partilkhaev, and A. V. Rokhin, Braz. J. Pharmacogn., 22, 419 (2012).Google Scholar
  30. 30.
    R. Amarowicz and F. Shahidi, Nahrung, 47, 21 (2003).PubMedCrossRefGoogle Scholar
  31. 31.
    N. S. Kumar and M. Rajapaksha, J. Chromatogr. A, 1083, 223 (2005).PubMedCrossRefGoogle Scholar
  32. 32.
    N. S. Kumar, W. M. A. M. B. Wijekoon, V. Kumar, P. A. N. Punyasiri, and I. S. B. Abeysinghe, J. Chromatogr. A, 1216, 4295 (2009).Google Scholar
  33. 33.
    T. Iwashina, F. Konta, and J. Kitajima, J. Jpn. Bot., 76, 166 (2001).Google Scholar
  34. 34.
    A. K. Jamal, W. A. Yaacob, and L. B. Din, Eur. J. Sci. Res., 28, 76 (2009).Google Scholar
  35. 35.
    D. N. Olennikov, S. V. Agafonova, G. B. Borovskii, T. A. Penzina, and A. V. Rokhin, Appl. Biochem. Microbiol., 45, 626 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of General and Experimental Biology, Siberian BranchRussian Academy of SciencesUlan-UdeRussia

Personalised recommendations