Advertisement

Community Mental Health Journal

, Volume 55, Issue 7, pp 1236–1245 | Cite as

Predictors of Post-Treatment Employment for Individuals with Substance Use Disorders

  • Min Kim
  • Stephen Leierer
  • JiHye JeonEmail author
Original Paper
  • 115 Downloads

Abstract

This study examined the influence of gender, post-treatment issue severities, and treatment participation rate on the post-treatment employment status of consumers with substance use disorders. The study analyzed the archival data of 100 unemployed and underemployed participants from a substance abuse intensive outpatient program. We found significant differences in the characteristics of gender, severity of alcohol use, drug use, psychiatric issues, and treatment participation rate. Female gender and low treatment participation rates negatively predicted employment. This study increased understanding about the interplay of alcohol, drug, and psychiatric influences on post-treatment employment status.

Keywords

Substance use disorders Psychiatric issues Employment Treatment participation rate 

Notes

Funding

This work was supported by Incheon National University Research Grant in 2015.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. Arria, A. M., Garnier-Dykstra, L. M., Cook, E. T., Calderia, K. M., Vincent, K. B., Baron, R. A., et al. (2013). Drug use patterns in young adulthood and post-college employment. Drug and Alcohol Dependence, 127, 23–30.  https://doi.org/10.1016/j.drugalcdep.2012.06.001.CrossRefGoogle Scholar
  2. Asakura, T., Gee, G. C., Nakayama, K., & Niwa, S. (2008). Returning to the “homeland”: Work-related ethnic discrimination and the health of Japanese Brazilians in Japan. American Journal of Public Health, 98, 743–750.CrossRefPubMedCentralGoogle Scholar
  3. Baker, A. L., Hiles, S. A., Thornton, L. K., Hides, L., & Lubman, D. I. (2012). A systematic review of psychological interventions for excessive alcohol consumption among people with psychotic disorders. Acta Psychiatrica Scandinavica, 126, 243–255.  https://doi.org/10.1111/j.1600-0447.2012.01885.x.CrossRefGoogle Scholar
  4. Baldwin, M. L., Marcus, S. C., & Simone, J. D. (2010). Job loss discrimination and former substance use disorders. Drug and Alcohol Dependence, 110, 1–7.CrossRefPubMedCentralGoogle Scholar
  5. Barry, D. T., Stefanovics, E. A., Desai, R. A., & Potensa, M. N. (2010). Differences in the associations between gambling problem severity and psychiatric disorders among black and white adults: Findings from the national epidemiologic survey on alcohol and related conditions. The American Journal on Addictions, 20, 69–77.  https://doi.org/10.1111/j.1521-0391.2010.00098.x.CrossRefPubMedCentralGoogle Scholar
  6. Becker, D. R., Drake, R. E., & Naughton, W. J. (2005). Supported employment for people with co-occurring disorders. Psychiatric Rehabilitation Journal, 28, 332–338.  https://doi.org/10.2975/28.2005.332.338.CrossRefGoogle Scholar
  7. Biegel, D. E., Stevenson, L. D., Beimers, D., Ronis, R. J., & Boyle, P. (2010). Predictors of competitive employment among consumers with co-occurring mental and substance use disorders. Research on Social Work Practice, 20, 191–201.  https://doi.org/10.1177/1049731509333373.CrossRefGoogle Scholar
  8. Calsyn, D. A., Saxon, A. J., Bush, K. R., Howell, D. N., Baer, J. S., Sloan, K. L., et al. (2004). The addiction severity index medical and psychiatric composite scores measure similar domains as the SF-36 in substance-dependent veterans: Concurrent and discriminant validity. Drug and Alcohol Dependence, 76(2), 165–171.CrossRefGoogle Scholar
  9. Campbell, K. (2007). Consumer predictors of competitive employment outcomes in supported employment. Unpublished doctoral dissertation, Purdue University, Indiana.Google Scholar
  10. Chisolm, M. S., Fitzsimons, H., Leoutsakos, J., Acquavita, S. P., Heil, S. H., Wilson-Murphy, M., et al. (2013). A comparison of cigarette smoking profiles in opioid-dependent pregnant patients receiving methadone or buprenorphine. Nicotine & Tobacco Research, 15, 1297–1304.  https://doi.org/10.1093/ntr/nts274.CrossRefGoogle Scholar
  11. Choi, S., Adams, S. M., MacMaster, S. A., & Seiters, J. (2013). Predictors of residential treatment retention among individuals with co-occurring substance abuse and mental health disorders. Journal of Psychoactive Drugs, 45, 122–131.  https://doi.org/10.1080/02791072.2013.785817.CrossRefGoogle Scholar
  12. Coker, E., Hamilton, S., Herderson, C., Weeks, C., Pinford, V., Rose, D., et al. (2013). Experiences of discrimination among people using mental health services in England 2008-2011. The British Journal of Psychiatry, 202, s58–s63.CrossRefGoogle Scholar
  13. Defife, J. A., Conklin, C. Z., Smith, J. M., & Poole, J. (2010). Psychotherapy appointment no-shows: Rates and reasons. Psychotherapy: Therapy, Research, Practice, Training, 47, 413–417.  https://doi.org/10.1037/a0021168.CrossRefGoogle Scholar
  14. Dennis, C. M., Cacciola, J. S., & Alterman, A. I. (2013). Addiction severity index (ASI) summary scores: Comparison of the recent status scores of the ASI-6 and the composite scores of the ASI-5. Journal of Substance Abuse Treatment, 45(5), 444–450.CrossRefGoogle Scholar
  15. Drake, R. E., Xie, H., Bond, G. R., McHugo, G. J., & Caton, C. L. (2013). Early psychosis and employment. Schizophrenia Research, 146, 111–117.  https://doi.org/10.1016/j.schres.2013.02.012.CrossRefGoogle Scholar
  16. Frounfelker, R. L., Wilkniss, S. M., Bond, G. R., Devitt, T. S., & Drake, R. E. (2011). Enrollment in supported employment services for clients with a co-occurring disorder. Psychiatric Services, 62, 545–547.  https://doi.org/10.1176/appi.ps.62.5.545.CrossRefGoogle Scholar
  17. Funn, J., & Woodruff, S. I. (2011). Prevalence and sociodemographic correlates of mental health problems among emergency department patients with high-risk and dependent alcohol use patterns. Journal of Dual Diagnosis, 7, 14–25.  https://doi.org/10.1080/15504263.2011.569192.CrossRefGoogle Scholar
  18. Greenfield, S. F., & Grella, C. E. (2009). What is “women-focused” treatment for substance use disorders? Psychiatric Services, 60, 880–882.  https://doi.org/10.1176/appi.ps.60.7.880.CrossRefGoogle Scholar
  19. He, Y., Hu, J., Yu, I., Gu, W., & Liang, Y. (2010). Determinants of return to work after occupational injury. Journal of Occupational Rehabilitation, 20, 378–386.CrossRefGoogle Scholar
  20. Hogue, A., Dauber, S., Dasaro, C., & Morgenstern, J. (2010). Predictors of employment in substance-using male and female welfare recipients. Journal of Substance Abuse Treatment, 38, 108–118.  https://doi.org/10.1016/j.jsat.2009.09.003.CrossRefPubMedCentralGoogle Scholar
  21. Honey, A. (2003). The impact of mental illness on employment: Consumers’ perspectives. Journal of Prevention, Assessment and Rehabilitation, 20, 267–276.Google Scholar
  22. Kim, R., Hickman, N., Gali, K., Orozco, N., & Prochaska, J. J. (2014). Maximizing retention with high risk participants in a clinical trial. American Journal of Health Promotion, 28, 268–274.  https://doi.org/10.4278/ajhp.120720-QUAN-355.CrossRefGoogle Scholar
  23. Kline, R. B. (2004). Principles and practices of structural equation modeling (2nd ed.). New York, NY: Guilford Press.Google Scholar
  24. Kline-Simon, A. H., Falk, D. E., Litten, R. Z., Mertens, J. R., Fertig, J., Ryan, M., et al. (2013). Posttreatment low-risk drinking as a predictor of future drinking and problem outcomes among individuals with alcohol use disorders. Alcoholism: Clinical and Experimental Research, 37, 373–380.  https://doi.org/10.1111/j.1530-0277.2012.01908.x.CrossRefGoogle Scholar
  25. Laudet, A. B. (2012). Rate and predictors of employment among formerly polysubstance dependent urban individuals in recovery. Journal of Addictive Diseases, 31, 288–302.  https://doi.org/10.1080/10550887.2012.694604.CrossRefPubMedCentralGoogle Scholar
  26. Lopez-Goni, J. J., Fernandez-Montalvo, J. F., & Arteaga, A. (2011). Addiction treatment dropout: Exploring patient characteristics. The American Journal on Addictions, 21, 78–85.  https://doi.org/10.1111/j.1521-0391.2011.00188.x.CrossRefGoogle Scholar
  27. Magidson, J. F., Gorka, S. M., MacPherson, L., Hopko, D. R., Blanco, C., Lejuez, C. W., et al. (2011). Examining the effect of the life enhancement treatment for substance use (LETS ACT) on residential substance abuse treatment retention. Addictive Behaviors, 36, 615–623.CrossRefPubMedCentralGoogle Scholar
  28. Magura, S., Staines, G. L., Blankertz, L., & Madison, E. M. (2004). The effectiveness of vocational services for substance users in treatment. Substance Use & Misuse, 39(13–14), 2165–2213.CrossRefGoogle Scholar
  29. McCutcheon, V. V., Heath, A. C., Edenberg, H. J., Grucza, R. A., Hesselbrock, V. M., Kramer, J. R., et al. (2009). Alcohol criteria endorsement and psychiatric and drug use disorders among DUI offenders: Greater severity among women and multiple offenders. Addictive Behaviors, 34, 432–439.  https://doi.org/10.1016/j.addbeh.2008.CrossRefGoogle Scholar
  30. McGovern, M. P., Lambert-Harris, C., Gotham, H. J., Claus, R. E., & Xie, H. (2014). Dual diagnosis capability in mental health and addiction treatment services: An assessment of programs across multiple state system. Administration and Policy in Mental Health and Mental Health Services Research, 41, 205–214.CrossRefGoogle Scholar
  31. McIntosh, J., Bloor, M., & Robertson, M. (2008). The health benefits of reductions in individuals’ use of illegal drugs. Journal of Substance Use, 13, 247–254.  https://doi.org/10.1080/14659890701802836.CrossRefGoogle Scholar
  32. McLellan, A. T., Kushner, H., Metzger, D., Peters, R., Smith, I., Grissom, G., et al. (1992). The Fifth Edition of the Addiction Severity Index. Journal of Substance Abuse Treatment, 9, 199–213.CrossRefGoogle Scholar
  33. Menard, S. (2010). Logistic regression: From introductory to advanced concepts and applications. Thousand Oaks, CA: SAGE Publications.CrossRefGoogle Scholar
  34. Minkoff, K. (2001). Developing standards of care for individuals with co-occurring psychiatric and substance use disorders. Psychiatric Services, 52, 597–599.CrossRefGoogle Scholar
  35. Morgenstern, J., Hogue, A., Dasaro, C., Keurbis, A., & Dauber, S. (2008). Characteristics of individuals screening positive for substance use in a welfare setting: Implications for welfare and substance-use disorders treatment systems. Journal of Studies on Alcohol and Drugs, 69, 561–570.CrossRefPubMedCentralGoogle Scholar
  36. Mueser, K., Gary, B., Essock, S., Clark, R., Carpenter-Song, E., Drake, R., et al. (2014). The effects of supported employment in Latino consumers with severe mental illness. Psychiatric Rehabilitation Journal, 37, 113–122.CrossRefGoogle Scholar
  37. Mueser, K. T., & McGurk, S. R. (2014). Supported employment for persons with serious mental illness: Current status and future directions. L’Encephale, 40, S45–S56.CrossRefGoogle Scholar
  38. Niv, N., & Hser, Y. (2006). Drug treatment service utilization and outcomes for Hispanic and White methamphetamine abusers. Health Services Research, 41, 1242–1257.  https://doi.org/10.1111/j.1475-6773.2006.00530.x.PubMedCentralGoogle Scholar
  39. Niv, N., Pham, P., & Hser, Y. (2009). Racial and ethnic differences in substance abuse service needs, utilization, and outcomes in California. Psychiatric Services, 60, 1350–1356.  https://doi.org/10.1176/appi.ps.60.10.1350.CrossRefGoogle Scholar
  40. Pentz, M. A., & Riggs, N. R. (2013). Longitudinal relationships of executive cognitive function and parent influence to child substance use and physical activity. Prevention Science, 14, 229–237.  https://doi.org/10.1007/s11121-012-0312-3.CrossRefGoogle Scholar
  41. Redonnnet, B., Chollet, A., Dombonne, E., Bowes, L., & Melchior, M. (2012). Tobacco, alcohol, cannabis and other illegal drug use among young adults: The socioeconomic context. Drug and Alcohol Dependence, 121, 231–239.  https://doi.org/10.1016/j.drugalcdep.2011.09.002.CrossRefGoogle Scholar
  42. Richardson, M., & Abraham, C. (2012). Psychological correlates of university students’ academic performance: A systematic review and meta-analysis. Psychological Bulletin, 138, 353–387.  https://doi.org/10.1037/a0026838.CrossRefGoogle Scholar
  43. Richardson, L., Wood, E., Montaner, J., & Kerr, T. (2012). Addiction treatment-related employment barriers: The impact of methadone maintenance. Journal of Substance Abuse Treatment, 43, 276–284.  https://doi.org/10.1016/j.jsat.2011.12.008.CrossRefPubMedCentralGoogle Scholar
  44. Rogers, E. S., Anthony, W. A., Cohen, M., & Davies, R. R. (1997). Prediction of vocational outcome based on clinical and demographic indicators among vocationally ready clients. Community Mental Health Journal, 33, 99–112.CrossRefGoogle Scholar
  45. Rogers, N. L., Embree, J. A., Masoudi, N., Huber, M., Ford, J. A., & Moore, D. (2011). Consumer perspectives on reasons for unsuccessful VR case closure: An exploratory study. Journal of Vocational Rehabilitation, 34, 151–161.  https://doi.org/10.3233/JVR-2011-0543.CrossRefGoogle Scholar
  46. Rohde, P., Stice, E., & Gau, J. M. (2012). Effects of three depression prevention interventions on risk for depressive disorder onset in the context of depression risk factors. Prevention Science, 13, 584–593.  https://doi.org/10.1007/s11121-012-0284-3.CrossRefPubMedCentralGoogle Scholar
  47. Rosenheck, R., Leslie, D., Keefe, R., McEvoy, J., Swartz, M., & Perkins, D. (2006). Barriers to employment for people with Schizophrenia. American Journal of Psychiatry, 163, 411–417.CrossRefGoogle Scholar
  48. Schuckit, M. A. (2006). Comorbidity between substance use disorders and psychiatric conditions. Addiction, 101, 76–88.  https://doi.org/10.1111/j.1360-0443.2006.01592.x.CrossRefGoogle Scholar
  49. Schulte, S. J., Meier, P. S., Stirling, J., & Berry, M. (2010). Unrecognized dual diagnosis—A risk factor for dropout of addiction treatment. Mental Health and Substance Use, 3, 94–109.  https://doi.org/10.1080/17523281003705199.CrossRefGoogle Scholar
  50. Shah, S., DeMatteo, D., Keesler, M., Davis, J., Heilbrun, K., & Festinger, D. S. (2013). Addiction severity index scores and urine drug screens art baseline as predictors of graduation from drug court. Crime & Delinquency, 61(9), 1–21.  https://doi.org/10.1177/0011128713496007.Google Scholar
  51. Sheidow, A. J., McCart, M., Zajac, K., & Davis, M. (2012). Prevalence and impact of substance use among emerging adults with serious mental health conditions. Psychiatric Rehabilitation Journal, 35, 235–243.  https://doi.org/10.2975/35.3.2012.235.243.CrossRefPubMedCentralGoogle Scholar
  52. Staring, A. B., Blaauw, E., & Mulder, C. L. (2012). The effects of assertive community treatment including integrated dual diagnosis treatment on nuisance acts and crimes in dual-diagnosis patients. Community Mental Health Journal, 48, 150–152.  https://doi.org/10.1007/s10597-011-9406-9.CrossRefGoogle Scholar
  53. Strickler, D. C., Whitley, R., Becker, D. R., & Drake, R. E. (2009). First person accounts of long-term employment activity among people with dual diagnosis. Psychiatric Rehabilitation Journal, 32, 261–268.  https://doi.org/10.2975/32.4.2009.261.268.CrossRefGoogle Scholar
  54. Substance Abuse and Mental Health Service Administration (2017). Reports and detailed tables from the 2016 national survey on drug use and health. NSDUH Series. Rockville, MD: AuthorsGoogle Scholar
  55. Thum, C. C., Briber, R., & Butler, S. F. (2000). Working it out: A vocational education program. Newton, MA: Inflexxion.Google Scholar
  56. Torvik, F. A., Rognmo, K., & Tambs, K. (2012). Alcohol use and mental distress as predictors of non-response in a general population health survey: the HUNT study. Social Psychiatry and Psychiatric Epidemiology, 47, 805–816.  https://doi.org/10.1007/s00127-011-0387-3.CrossRefGoogle Scholar
  57. Tuten, M., Fitzsimons, H., Chisolm, M. S., Nuzzo, P. A., & Jones, H. E. (2012). Contingent incentives reduce cigarette smoking among pregnant, methadone-maintained women: Results of an initial feasibility and efficacy randomized clinical trial. Addiction, 107, 1868–1877.  https://doi.org/10.1111/j.1360-0443.2012.03923.x.CrossRefPubMedCentralGoogle Scholar
  58. Wand, B. M., Chiffelle, L. A., O’Connell, N. E., McAuley, J. H., & DeSouza, L. H. (2010). Self-reported assessment of disability and performance-based assessment of disability are influenced by different patient characteristics in acute low back pain. European Spine Journal, 19, 633–640.  https://doi.org/10.1007/s00586-009-1180-9.CrossRefGoogle Scholar
  59. Xie, H., Drake, R. E., McHugo, G. J., Xie, L., & Mohandas, A. (2010). The 10-year course of remission, abstinence, and recovery in dual diagnosis. Journal of Substance Abuse Treatment, 39, 132–140.  https://doi.org/10.1016/j.jsat.2010.05.011.CrossRefGoogle Scholar
  60. Zabkiewicz, D., & Schmidt, L. A. (2007). Behavioral health problems as barriers to work: Results from a 6-year panel study of welfare recipients. Journal of Behavioral Health Services and Research, 34, 168–185.  https://doi.org/10.1007/s11414-007-9060-8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Incheon National University, Dept. of Social WelfareIncheonSouth Korea
  2. 2.Department of Addictions and Rehabilitation StudiesEast Carolina University, Health Sciences BuildingGreenvilleUSA

Personalised recommendations