Deep learning–driven permeability estimation from 2D images

  • Mauricio Araya-PoloEmail author
  • Faruk O. Alpak
  • Sander Hunter
  • Ronny Hofmann
  • Nishank Saxena
Original Paper


Current micro-CT image resolution is limited to 1–2 microns. A recent study has identified that at least 10 image voxels are needed to resolve pore throats, which limits the applicability of direct simulations using the digital rock (DR) technology to medium-to-coarse–grained rocks (i.e., rocks with permeability > 100 mD). On the other hand, 2D high-resolution colored images such as the ones obtained from transmitted light microscopy delivers a much higher resolution (approximately 0.6 microns). However, reliable and efficient workflows to jointly utilize full-size 2D images, measured 3D core-plug permeabilities, and 2D direct pore-scale ow simulations on 2D images within a predictive framework for permeability estimation are lacking. In order to close this gap, we have developed a state-of-the-art deep learning (DL) algorithm for the direct prediction of permeability from 2D images. We take advantage of the computing graphics processing units (GPUs) in our implementation of this algorithm. The trained DL model predicts properties accurately within seconds, and therefore, provide a significant speeding up simulation workflow. A real-life dataset is used to demonstrate the applicability and versatility of the proposed method.


Deep learning Machine learning Permeability Thin-section Digital rock Sandstone Reservoir properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Shell International Exploration and Production Inc. for allowing the publication of this material.


  1. 1.
    Saxena, N., Hows, A., Hofmann, R., Alpak, F.O., Freeman, J., Hunter, S., Appel, M.: Imaging and computational considerations for image computed permeability: operating envelope of digital rock physics. Adv. Water Resour. 116, 127–144 (2018)CrossRefGoogle Scholar
  2. 2.
    Sudakov, O., Burnaev, E., Koroteev, D.: Driving Digital Rock Towards Machine Learning: Predicting Permeability with Gradient Boosting and Deep Neural Networks. ArXiv e-prints (2018)Google Scholar
  3. 3.
    Sochi, T.: Pore-Scale Modeling of Non-Newtonian Flow in Porous Media. PhD thesis, 2010 (2010)Google Scholar
  4. 4.
    Srisutthiyakorn, N.: Deep-learning methods for predicting permeability from 2D/3D binary-segmented images. pp. 3042–3046 (2016)Google Scholar
  5. 5.
    Saxena, N., Mavko, G., Hofmann, R., Srisutthiyakorn, N.: Estimating permeability from thin sections without reconstruction: digital rock study of 3d properties from 2d images. Computers and Geosciences 102, 79–99 (2017)CrossRefGoogle Scholar
  6. 6.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 436(05), 521 (2015)Google Scholar
  7. 7.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press (2016)Google Scholar
  8. 8.
    Adler, A., Boublil, D., Zibulevsky, M.: Block-based compressed sensing of images via deep learning. In: 2017 IEEE 19Th International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6 (2017)Google Scholar
  9. 9.
    Wang, G.: A perspective on deep imaging. IEEE Access 4, 8914–8924 (2016)CrossRefGoogle Scholar
  10. 10.
    Würfl, T., Hoffmann, M., Christlein, V., Breininger, K., Huang, Y., Unberath, M., Maier, A.K.: Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems. IEEE Trans. Med. Imaging, pp. 1–1 (2018)Google Scholar
  11. 11.
    Araya-Polo, M., Jennings, J., Adler, A., Dahlke, T.: Deep-learning tomography. Lead. Edge 37(1), 58–66 (2018)CrossRefGoogle Scholar
  12. 12.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)CrossRefGoogle Scholar
  13. 13.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention –MICCAI 2015, pp 234–241. Springer International Publishing, Berlin (2015)Google Scholar
  14. 14.
    Chollet, F., et al.: Keras. (2015)
  15. 15.
    Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12Th USENIX Conference on Operating Systems Design and Implementation, OSDI’16, pp 265–283. USENIX Association, Berkeley (2016)Google Scholar
  16. 16.
    Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer, E.: CuDNN: Efficient Primitives for Deep Learning. ArXiv e-prints (2014)Google Scholar
  17. 17.
    Ruder, S.: An Overview of Gradient Descent Optimization Algorithms. ArXiv e-prints (2016)Google Scholar
  18. 18.
    Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28, ICML’13, pp. III–1139–III–1147. (2013)Google Scholar
  19. 19.
    Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Proceedings of the 24Th International Conference on Neural Information Processing Systems, NIPS’11, pp 2546–2554. Curran Associates Inc, USA (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mauricio Araya-Polo
    • 1
    Email author
  • Faruk O. Alpak
    • 1
  • Sander Hunter
    • 1
  • Ronny Hofmann
    • 1
  • Nishank Saxena
    • 1
  1. 1.Shell International Exploration & Production Inc.HoustonUSA

Personalised recommendations