Advertisement

Simulation of hydro-mechanically coupled processes in rough rock fractures using an immersed boundary method and variational transfer operators

  • Cyrill von PlantaEmail author
  • Daniel Vogler
  • Xiaoqing Chen
  • Maria G. C. Nestola
  • Martin O. Saar
  • Rolf Krause
Original Paper
  • 26 Downloads

Abstract

Hydro-mechanical processes in rough fractures are highly non-linear and govern productivity and associated risks in a wide range of reservoir engineering problems. To enable high-resolution simulations of hydro-mechanical processes in fractures, we present an adaptation of an immersed boundary method to compute fluid flow between rough fracture surfaces. The solid domain is immersed into the fluid domain and both domains are coupled by means of variational volumetric transfer operators. The transfer operators implicitly resolve the boundary between the solid and the fluid, which simplifies the setup of fracture simulations with complex surfaces. It is possible to choose different formulations and discretization schemes for each subproblem and it is not necessary to remesh the fluid grid. We use benchmark problems and real fracture geometries to demonstrate the following capabilities of the presented approach: (1) resolving the boundary of the rough fracture surface in the fluid; (2) capturing fluid flow field changes in a fracture which closes under increasing normal load; and (3) simulating the opening of a fracture due to increased fluid pressure.

Keywords

Fluid flow Fracture mechanics Non-matching meshes Pseudo-L2-projection Immersed boundary Hydro-mechanical coupling Geothermal energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The Werner Siemens-Stiftung (Foundation) is thanked for its support of the Geothermal Energy and Geofluids group.

Funding information

We received funding from the Swiss Competence Center for Energy Research - Supply of Electricity (SCCER-SoE), by Innosuisse - Swiss Innovation Agency under Grant Number 28305.1 and the Swiss Federal Office of Energy (SFOE) under Grant Number SI/500676-02.

References

  1. 1.
    Amann, F., Gischig, V., Evans, K., Doetsch, J., Jalali, R., Valley, B., Krietsch, H., Dutler, N., Villiger, L., Brixel, B., Klepikova, M., Kittilä, A, Madonna, C., Wiemer, S., Saar, M.O., Loew, S., Driesner, T., Maurer, H., Giardini, D.: The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment. Solid Earth 9(1), 115–137 (2018)Google Scholar
  2. 2.
    Baaijens, F.P.T.: A fictitious domain/mortar element method for fluid–structure interaction. Int. J. Numer. Methods Fluids 35(7), 743–761 (2001)Google Scholar
  3. 3.
    Bandis, S., Lumsden, A., Barton, N.: Fundamentals of rock joint deformation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 20(6), 249–268 (1983)Google Scholar
  4. 4.
    Barton, N., Bandis, S., Bakhtar, K.: Strength, deformation and conductivity coupling of rock joints. Int. J. Rock Mech. Min. Sci. 22(3), 121–140 (1985)Google Scholar
  5. 5.
    Boffi, D., Gastaldi, L.: A finite element approach for the immersed boundary method. Compos. Struct. 81 (8-11), 491–501 (2003)Google Scholar
  6. 6.
    Brown, S.R.: Fluid-flow through rock joints - the effect of surface-roughness. J. Geophys. Res. Solid Earth Planets 92(B2), 1337–1347 (1987)Google Scholar
  7. 7.
    Cacas, M.C., Ledoux, E., Marsily, G., Tillie, B., Barbreau, A., Durand, E., Feuga, B., Peaudecerf, P.: Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. the flow model. Water Resour. Res. 26(3), 479–489 (1990)Google Scholar
  8. 8.
    Devendran, D., Peskin, C.S.: An immersed boundary energy-based method for incompressible viscoelasticity. J. Comput. Phys. 231(14), 4613–4642 (2012)Google Scholar
  9. 9.
    Dickopf, T.: Multilevel methods based on non-nested meshes. PhD Thesis. PhD thesis, University of Bonn (2010)Google Scholar
  10. 10.
    Dreuzy, J.R., Méheust, Y., Pichot, G.: Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks (dfn). J. Geophys. Res. Solid Earth 117(B11), 1–21 (2012)Google Scholar
  11. 11.
    Figueiredo, B., Tsang, C.F., Rutqvist, J., Niemi, A.: A study of changes in deep fractured rock permeability due to coupled hydro-mechanical effects. Int. J. Rock Mech. Min. Sci. 79, 70–85 (2015)Google Scholar
  12. 12.
    Gan, Q., Elsworth, D.: A continuum model for coupled stress and fluid flow in discrete fracture networks. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 2(1), 43–61 (2016)Google Scholar
  13. 13.
    Gaston, D., Newman, C., Hansen, G., Lebrun-Grandié, D.: Moose: a parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239, 1768–1778 (2009)Google Scholar
  14. 14.
    Girault, V., Wheeler, M.F., Ganis, B., Mear, M.E.: A lubrication fracture model in a poro-elastic medium. Math. Models Methods Appl. Sci. 25(04), 587–645 (2015)Google Scholar
  15. 15.
    Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D.: A distributed lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25(5), 755–794 (1999)Google Scholar
  16. 16.
    Hesch, C., Gil, A., Carreño, A.A., Bonet, J., Betsch, P.: A mortar approach for fluid–structure interaction problems: immersed strategies for deformable and rigid bodies. Comput. Methods Appl. Mech. Eng. 278, 853–882 (2014)Google Scholar
  17. 17.
    Hobé, A, Vogler, D., Seybold, M.P., Ebigbo, A., Settgast, R.R., Saar, M.O.: Estimating fluid flow rates through fracture networks using combinatorial optimization. Adv. Water Resour. 122, 85–97 (2018)Google Scholar
  18. 18.
    Hyman, M.A.: Non-iterative numerical solution of boundary-value problems. Appl. Sci. Res., Section B 2(1), 325–351 (1952)Google Scholar
  19. 19.
    Jiang, Y., Li, B., Tanabashi, Y.: Estimating the relation between surface roughness and mechanical properties of rock joints. Int. J. Rock Mech. Min. Sci. 43(6), 837–846 (2006)Google Scholar
  20. 20.
    Kikuchi, N., Oden, J.T.: Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM (1988)Google Scholar
  21. 21.
    Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: libmesh: a c++ library for parallel adaptive mesh refinement/coarsening simulations. Engineering with Computers 22, 237–254 (2006)Google Scholar
  22. 22.
    Kling, T., Vogler, D., Pastewka, L., Amann, F., Blum, P.: Numerical simulations and validation of contact mechanics in a granodiorite fracture. Rock Mech. Rock. Eng. 51(9), 2805–2824 (2018)Google Scholar
  23. 23.
    Krause, R., Zulian, P.: A parallel approach to the variational transfer of discrete fields between arbitrarily distributed unstructured finite element meshes. SIAM J. Sci. Comput. 38(3), C307–C333 (2016)Google Scholar
  24. 24.
    Liu, W.K., Liu, Y., Farrell, D., Zhang, L., Wang, X.S., Fukui, Y., Patankar, N., Zhang, Y., Bajaj, C., Lee, J., et al.: Immersed finite element method and its applications to biological systems. Comput. Meth. Appl. Mech. Eng. 195(13-16), 1722–1749 (2006)Google Scholar
  25. 25.
    Matsuki, K., Wang, E., Giwelli, A., Sakaguchi, K.: Estimation of closure of a fracture under normal stress based on aperture data. Int. J. Rock Mech. Min. Sci. 45(2), 194–209 (2008)Google Scholar
  26. 26.
    McClure, M.W., Horne, R.N.: Correlations between formation properties and induced seismicity during high pressure injection into granitic rock. Eng. Geol. 175, 74–80 (2014)Google Scholar
  27. 27.
    McClure, M.W., Horne, R.N.: An investigation of stimulation mechanisms in enhanced geothermal systems. Int. J. Rock Mech. Min. Sci. 72, 242–260 (2014)Google Scholar
  28. 28.
    Nemoto, K., Watanabe, N., Hirano, N., Tsuchiya, N.: Direct measurement of contact area and stress dependence of anisotropic flow through rock fracture with heterogeneous aperture distribution. Earth Planet. Sci. Lett. 281(1-2), 81–87 (2009)Google Scholar
  29. 29.
    Nestola, M.G., Gizzi, A., Cherubini, C., Filippi, S.: Three-band decomposition analysis in multiscale fsi models of abdominal aortic aneurysms. International Journal of Modern Physics C 27(02), 017 (2016)Google Scholar
  30. 30.
    Nestola, M.G.C., Becsek, B., Zolfaghari, H., Zulian, P., Obrist, D., Krause, R.: An immersed boundary method based on the variational l2-projection approach. Domain Decomposition Methods in Science and Engineering XXIV 125, 1–8 (2017)Google Scholar
  31. 31.
    Nestola, M.G.C., Becsek, B., Zolfaghari, H., Zulian, P., De Marinis, D., Krause, R., Obrist, D.: An immersed boundary method for fluid-structure interaction based on overlapping domain decomposition. arXiv:http://arXiv.org/abs/1810.13046 (2018)
  32. 32.
    Nestola, M.G.C., Zulian, P., Krause, R.: An contact fluid-structure interaction formulation based on the fictitious domain method. In: Preparation (2019)Google Scholar
  33. 33.
    Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)Google Scholar
  34. 34.
    Planta, C., Vogler, D., Nestola, M., Zulian, P., Krause, R.: Variational parallel information transfer between unstructured grids in geophysics - applications and solutions methods. In: Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering Stanford University (2018)Google Scholar
  35. 35.
    Planta, C., Vogler, D., Zulian, P., Saar, M.O., Krause, R.: Solution of contact problems between rough body surfaces with non matching meshes using a parallel mortar method. arXiv:http://arXiv.org/abs/1811.02914(2018)
  36. 36.
    Pyrak-Nolte, L.J., Morris, J.P.: Single fractures under normal stress: the relation between fracture specific stiffness and fluid flow. Int. J. Rock Mech. Min. Sci. 37(1-2), 245–262 (2000)Google Scholar
  37. 37.
    Raven, K.G., Gale, J.E.: Water-flow in a natural rock fracture as a function of stress and sample-size. Int. J. Rock Mech. Min. Sci. 22(4), 251–261 (1985)Google Scholar
  38. 38.
    Rutqvist, J., Stephansson, O.: The role of hydromechanical coupling in fractured rock engineering. Hydrogeol. J. 11(1), 7–40 (2003)Google Scholar
  39. 39.
    Saul’ev, V.K.: On the solution of some boundary value problems on high performance computers by fictitious domain method. Siberian Math J 4(4), 912–925 (1963)Google Scholar
  40. 40.
    Tatone, B.S.A., Grasselli, G.: Characterization of the effect of normal load on the discontinuity morphology in direct shear specimens using x-ray micro-ct. Acta Geotech. 10(1), 31–54 (2015)Google Scholar
  41. 41.
    Tester, J.W., Anderson, B., Batchelor, A., Blackwell, D., DiPippo, R., Drake, E., Garnish, J., Livesay, B., Moore, M.C., Nichols, K., et al: The future of geothermal energy: impact of enhanced geothermal systems (EGS) on the United States in the 21st century. Massachusetts Institute of Technology 209 (2006)Google Scholar
  42. 42.
    Tsang, Y.W.: The effect of tortuosity on fluid-flow through a single fracture. Water Resour. Res. 20(9), 1209–1215 (1984)Google Scholar
  43. 43.
    Tsang, Y.W., Tsang, C.: Channel model of flow through fractured media. Water Resour. Res. 23(3), 467–479 (1987)Google Scholar
  44. 44.
    Vogler, D.: Hydro-mechanically coupled processes in heterogeneous fractures: experiments and numerical simulations. PhD thesis, ETH Zurich (2016)Google Scholar
  45. 45.
    Vogler, D., Amann, F., Bayer, P., Elsworth, D.: Permeability evolution in natural fractures subject to cyclic loading and gouge formation. Rock Mech. Rock. Eng. 49(9), 3463–3479 (2016)Google Scholar
  46. 46.
    Vogler, D., Settgast, R.R., Annavarapu, C., Bayer, P., Amann, F.: Hydro-mechanically coupled flow through heterogeneous fractures. In: Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering, Stanford, CA SGP-TR-209 (2016)Google Scholar
  47. 47.
    Vogler, D., Walsh, S.D.C., Bayer, P., Amann, F.: Comparison of surface properties in natural and artificially generated fractures in a crystalline rock. Rock Mech. Rock. Eng. 50(11), 2891–2909 (2017)Google Scholar
  48. 48.
    Vogler, D., Settgast, R.R., Annavarapu, C., Madonna, C., Bayer, P., Amann, F.: Experiments and simulations of fully hydro-mechanically coupled response of rough fractures exposed to high pressure fluid injection. J. Geophys. Res. Solid Earth 123, 1186–1200 (2018)Google Scholar
  49. 49.
    Watanabe, N., Hirano, N., Tsuchiya, N.: Determination of aperture structure and fluid flow in a rock fracture by high-resolution numerical modeling on the basis of a flow-through experiment under confining pressure. Water Resour. Res. 44(6), n/a–n/a (2008)Google Scholar
  50. 50.
    Witherspoon, P.A., Wang, J.S., Iwai, K., Gale, J.E.: Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16(6), 1016–1024 (1980)Google Scholar
  51. 51.
    Wohlmuth, B.I.: A mortar finite element method using dual spaces for the lagrange multiplier. SIAM J. Numer. Anal. 38(3), 989–1012 (2000)Google Scholar
  52. 52.
    Wohlmuth, B.I., Krause, R.H.: Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems. SIAM J. Sci. Comput. 25(1), 324–347 (2003)Google Scholar
  53. 53.
    Yu, Z.: A dlm/fd method for fluid/flexible-body interactions. J. Comput. Phys. 207(1), 1–27 (2005)Google Scholar
  54. 54.
    Zangerl, C., Evans, K.F., Eberhardt, E., Loew, S.: Normal stiffness of fractures in granitic rock: a compilation of laboratory and in-situ experiments. Int. J. Rock Mech. Min. Sci. 45(8), 1500–1507 (2008)Google Scholar
  55. 55.
    Zimmerman, R.W., Bodvarsson, G.S.: Hydraulic conductivity of rock fractures. Transp. Porous Media 23 (1), 1–30 (1996)Google Scholar
  56. 56.
    Zimmerman, R.W., Kumar, S., Bodvarsson, G.S.: Lubrication theory analysis of the permeability of rough-walled fractures. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28(4), 325–331 (1991)Google Scholar
  57. 57.
    Zulian, P., Kopaničáková, A., Nestola, M.C.G., Fink, A., Fadel, N., Magri, V., Schneider, T., Botter, E., Mankau, J.: Utopia: a C++ embedded domain specific language for scientific computing. Git repository. https://bitbucket.org/zulianp/utopia (2016)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Computational ScienceUniversità della Svizzera italianaLuganoSwitzerland
  2. 2.ETH ZurichInstitute of GeophysicsZurichSwitzerland
  3. 3.ETH ZurichInstitute of Process EngineeringZurichSwitzerland
  4. 4.Center for Computational Medicine and Cardiology CCMCLuganoSwitzerland

Personalised recommendations