Advertisement

Computational Geosciences

, Volume 23, Issue 5, pp 1141–1160 | Cite as

A direct mixed–enriched Galerkin method on quadrilaterals for two-phase Darcy flow

  • Todd ArbogastEmail author
  • Zhen Tao
Original Paper
  • 79 Downloads

Abstract

We develop a locally conservative, finite element method for the simulation of two-phase flow on quadrilateral meshes that minimize the number of degrees of freedom (DoFs) subject to accuracy requirements and the DoF continuity constraints. We use a mixed finite element method (MFEM) for the flow problem and an enriched Galerkin method (EG) for the transport, stabilized with an entropy viscosity. Standard elements for MFEM lose accuracy on quadrilaterals, so we use the newly developed AC elements which have our desired properties. Standard tensor product spaces used in EG have many excess DoFs, so we would like to use the minimal DoF serendipity elements. However, the standard elements lose accuracy on quadrilaterals, so we use the newly developed direct serendipity elements. We use the Hoteit-Firoozabadi formulation, which requires a capillary flux. We compute this in a novel way that does not break down when one of the saturations degenerate to its residual value. Extension to three dimensions is described. Numerical tests show that accurate results are obtained.

Keywords

Mixed method Enriched Galerkin AC elements Serendipity elements Capillary flux Entropy viscosity 

Mathematics Subject Classification (2010)

79S05 65M60 65M08 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Aavatsmark, I., Eigestad, G.T., Klausen, R.A., Wheeler, M.F., Yotov, I.: Convergence of a symmetric MPFA method on quadrilateral grids. Comput. Geosci. 11, 333–345 (2007)Google Scholar
  2. 2.
    Arbogast, T.: The existence of weak solutions to single-porosity and simple dual-porosity models of two-phase incompressible flow. J. Nonlinear Anal. Theory Methods Appl. 19, 1009–1031 (1992)Google Scholar
  3. 3.
    Arbogast, T., Correa, M.R.: Two families of H(div) mixed finite elements on quadrilaterals of minimal dimension. SIAM J. Numer. Anal. 54, 3332–3356 (2016).  https://doi.org/10.1137/15M1013705 Google Scholar
  4. 4.
    Arbogast, T., Huang, C.: A fully mass and volume conserving implementation of a characteristic method for transport problems. SIAM J. Sci. Comput. 28, 2001–2022 (2006)Google Scholar
  5. 5.
    Arbogast, T., Juntunen, M., Pool, J., Wheeler, M.F.: A discontinuous Galerkin method for two-phase flow in a porous medium enforcing H(div) velocity and continuous capillary pressure. Comput. Geosci. 17, 1055–1078 (2013)Google Scholar
  6. 6.
    Arbogast, T., Tao, Z.: Direct Serendipity Finite Elements on Convex Quadrilaterals, Tech. Rep ICES REPORT 17-28, Institute for Computational Engineering and Sciences, University of Texas at Austin (2017)Google Scholar
  7. 7.
    Arbogast, T.: Direct serendipity and mixed finite elements on convex quadrilaterals, Submitted, arXiv:1809.02192 (2018)
  8. 8.
    Arbogast, T.: Construction of H(div)-conforming mixed finite elements on cuboidal hexahedra, Numer. Math., (to appear).  https://doi.org/10.1007/s00211-018-0998-7 (2018)Google Scholar
  9. 9.
    Arbogast, T., Wheeler, M.F.: A characteristics-mixed finite element method for advection dominated transport problems. SIAM J. Numer. Anal. 32, 404–424 (1995)Google Scholar
  10. 10.
    Arnold, D.N., Awanou, G.: The serendipity family of finite elements. Found. Comput. Math. 11, 337–344 (2011)Google Scholar
  11. 11.
    Arnold, D.N., Boffi, D., Falk, R.S.: Approximation by quadrilateral finite elements. Math. Comp. 71, 909–922 (2002)Google Scholar
  12. 12.
    Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél Math. Anal. Numér. 19, 7–32 (1985)Google Scholar
  13. 13.
    Babuška, I., Baumann, C., Oden, J.: A discontinuous hp finite element method for diffusion problems: 1-d analysis. Comput. Math. Appl. 37, 103–122 (1999)Google Scholar
  14. 14.
    Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Wells, D.: The deal.II library, version 8.4. J. Numer. Math. 24, 135–141 (2016)Google Scholar
  15. 15.
    Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972)Google Scholar
  16. 16.
    Bergot, M., Duruflé, M.: Approximation of H(div) with high-order optimal finite elements for pyramids, prisms and hexahedra. Commun. Comput. Phys. 14, 1372–1414 (2013)Google Scholar
  17. 17.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, No. 44 in Springer Series in Computational Mathematics. Springer, Berlin (2013)Google Scholar
  18. 18.
    Bonito, A., Guermond, J.-L., Popov, B.: Stability analysis of explicit entropy viscosity methods for non-linear scalar conservation equations. Math. Comput. 83, 1039–1062 (2014)Google Scholar
  19. 19.
    Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media, Vol. 2 of Computational Science and Engineering Series. SIAM, Philadelphia (2006)Google Scholar
  20. 20.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)Google Scholar
  21. 21.
    Cockburn, B., Fu, G.: Superconvergence by M-decompositions. Part III: construction of three-dimensional finite elements. ESAIM: Math. Modell. Numer. Anal. 51, 365–398 (2017)Google Scholar
  22. 22.
    Douglas, J. Jr, Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)Google Scholar
  23. 23.
    Davis, T.A.: Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)Google Scholar
  24. 24.
    Ewing, R.E., Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Engrg. 47, 73–92 (1984)Google Scholar
  25. 25.
    Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)Google Scholar
  26. 26.
    Guermond, J.-L., Pasquetti, R., Popov, B.: Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230, 4248–4267 (2011)Google Scholar
  27. 27.
    Hoteit, H., Firoozabadi, A.: An efficient numerical model for incompressible two-phase flow in fractured media. Adv. Water Resour. 31, 891–905 (2008)Google Scholar
  28. 28.
    Hoteit, H.: Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures. Adv. Water Resour. 31, 56–73 (2008)Google Scholar
  29. 29.
    Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002)Google Scholar
  30. 30.
    Hyman, J., Morel, J., Shashkov, M., Steinberg, S.: Mimetic finite difference methods for diffusion equations locally conservative numerical methods for flow in porous media. Comput. Geosci. 6, 333–352 (2002)Google Scholar
  31. 31.
    Ingram, R., Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method on hexahedra. SIAM J. Numer Anal. 48, 1281–1312 (2010)Google Scholar
  32. 32.
    Kaliakin, V.N.: Introduction to approximate solution techniques, numerical modeling, and finite element methods. CRC Press, Boca Raton (2001)Google Scholar
  33. 33.
    Kou, J., Sun, S.: On iterative IMPES formulation for two phase flow with capillarity in heterogeneous porous media, Int’l. J. Numer. Anal. Model. Ser. B 1, 20–40 (2010)Google Scholar
  34. 34.
    Lee, N.-S., Bathe, K.-J.: Effects of element distortions on the performance of isoparametric elements. Intl. J. Numer. Meth. Eng. 36, 3553–3576 (1993)Google Scholar
  35. 35.
    Lee, S., Lee, Y.-J., Wheeler, M.F.: A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic problems. SIAM J. Sci. Comput. 38, A1404–A1429 (2016)Google Scholar
  36. 36.
    Lee, S., Wheeler, M.F.: Adaptive enriched Galerkin methods for miscible displacement problems with entropy residual stabilization. J. Comput. Phys. 331, 19–37 (2017)Google Scholar
  37. 37.
    Lee, S.: Enriched galerkin methods for two-phase flow in porous media with capillary pressure. J. Comput. Phys. 367, 65–86 (2018)Google Scholar
  38. 38.
    Raviart, R.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Methods, pp 292–315. no. 606 in Lecture Notes in Math., Springer-Verlag, New York (1977)Google Scholar
  39. 39.
    Rivière, B., Wheeler, M., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39, 902–931 (2001)Google Scholar
  40. 40.
    Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3, 337–360 (1999)Google Scholar
  41. 41.
    Siqueira, D., Devloo, P.R.B., Gomes, S.M.: A new procedure for the construction of hierarchical high order hdiv and hcurl finite element spaces. J. Comput. App. Math. 240, 204–214 (2013)Google Scholar
  42. 42.
    Sun, S., Liu, J.: A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method. SIAM J. Sci. Comput. 31, 2528–2548 (2009)Google Scholar
  43. 43.
    Tao, Z.: Numerical Analysis of Multiphase flows in Porous Media on Non-Rectangular Geometry, PhD thesis, University of Texas at Austin (2017)Google Scholar
  44. 44.
    Thomas, S., Wheeler, M.F.: Enhanced velocity mixed finite element methods for modeling coupled flow and transport on non-matching multiblock grids, Manuscript completed (2010)Google Scholar
  45. 45.
    Wang, H., Liang, D., Ewing, R.E., Lyons, S.L., Qin, G.: An ELLAM approximation for highly compressible multicomponent flows in porous media. Comput. Geosci. 6, 227–251 (2002)Google Scholar
  46. 46.
    Wang, H., Zhao, W., Espedal, M.S., Telyakovskiy, A.S.: A component-based Eulerian–Lagrangian formulation for multicomponent multiphase compositional flow and transport in porous media. SIAM. J. Sci. Comput. 35, B462–B486 (2013)Google Scholar
  47. 47.
    Wheeler, J.A., Yotov, M.F.W.I.: Enhanced velocity mixed finite element methods for flow in multiblock domains. Comput. Geosci. 6, 315–332 (2002)Google Scholar
  48. 48.
    Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)Google Scholar
  49. 49.
    Wheeler, M.F., Xue, G., Yotov, I.: Multipoint flux mixed finite element methods on distorted quadrilateral and hexahedral grids. Numer. Math. 121, 165–204 (2012)Google Scholar
  50. 50.
    Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44, 2082–2106 (2006)Google Scholar
  51. 51.
    Zingan, V., Guermond, J.-L., Morel, J., Popov, B.: Implementation of the entropy viscosity method with the discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 253, 479–490 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Texas at AustinAustinUSA
  2. 2.Institute for Computational Engineering and SciencesAustinUSA
  3. 3.Institute for Computational Engineering and SciencesUniversity of Texas at AustinAustinUSA

Personalised recommendations