Advertisement

Global/local model order reduction in coupled flow and linear thermal-poroelasticity

  • Horacio FlorezEmail author
  • Eduardo Gildin
Original Paper
  • 4 Downloads

Abstract

Coupled flow and geomechanics computations are very complex and require solving large nonlinear systems. Such simulations are intense from both runtime and memory standpoint, which strongly hints at employing model order reduction (MOR) techniques to speed them up. Different types of Reduced-Order Models (ROM) have been proposed to alleviate this computational burden. MOR approaches rely on projection operators to decrease the dimensionality of the problem. We first execute a computationally expensive “offline” stage, during which we carefully study the full order model (FOM). Upon creating a ROM basis, we then perform the cheap “online” stage. Our reduction strategy estimates a ROM using proper orthogonal decomposition (POD). We determine a family of solutions to the problem, for a suitable sample of input conditions, where every single realization is so-called a “snapshot.” We then ensemble all snapshots to determine a compressed subspace that spans the solution. Usually, POD employs a fixed reduced subspace of global basis vectors. The usage of a global basis is not convenient to tackle problems characterized by different physical regimes, parameter changes, or high-frequency features. Having many snapshots to capture all these variations is unfeasible, which suggests seeking adaptive approaches based on the closest regional basis. We thus develop such a strategy based on local POD basis to reduce one-way coupled flow and geomechanics computations. We partition the time window to adequately capture regimes such as depletion/build-up and decreasing the number of snapshots per basis. We focus on linear elasticity and consider factors such as the role of the heterogeneity. We also assess how to tackle different degrees of freedom, such as the displacements (intercalated and coupled), pressure, and temperature, with MOR. Preliminary 2- and 3-D results show significant compression ratios up to 99.9% for the mechanics part. We formally compare FOM and ROM and provide time data to demonstrate the speedup of the procedure. Examples focus on linear and nonlinear poroelasticity. We employ continuous Galerkin finite elements for all of the discretizations.

Keywords

Model order reduction Proper orthogonal decomposition Elasticity Continuous Galerkin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The first author acknowledges “GeoFeMOR, LLC” for partially funding this research, allowing access to IPFA and LogProc and permitting to publish these results. The authors thank the anonymous reviewers for their suggestions and relevant comments to improve this paper.

References

  1. 1.
    Abousleiman, Y., Cheng, A.D., Cui, L., Detournay, E., Roegiers, J. C.: Mandel’s problem revisited. Geotechnique 46, 187–195 (1996)CrossRefGoogle Scholar
  2. 2.
    Amsallem, D., Zahr, M.J., Farhat, C.: Nonlinear model order reduction based on local reduced–order bases. Int. J. Numer. Meth. Eng. 92, 891–916 (2012)CrossRefGoogle Scholar
  3. 3.
    Argáez, M., Ceberio, M., Florez, H., Mendez, O.: A Model Order Reduction Method for Solving High-Dimensional Problems. Proceedings of NAFIPS. IEEE, El Paso (2016)Google Scholar
  4. 4.
    Aziz, K., Settari, A.: Petroleum reservoir simulation. Elsevier Applied Science Publishers (1986)Google Scholar
  5. 5.
    Batselier, K., Yu, W., Daniel, L., Wong, N.: Computing low-rank approximations of large-scale matrices with the Tensor Network randomized SVD. SIAM J. Matrix Anal. Appl. 39(3), 1221–1244 (2018)CrossRefGoogle Scholar
  6. 6.
    Becker, E., Carey, G., Oden, J.: Finite Elements: An Introduction, The Texas Finite Element Series. Prentice-Hall Inc., Englewood Cliffs, vol. I (1981)Google Scholar
  7. 7.
    Carlberg, K., Bou-Mosleh, C., Farhat, C.: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations. Int. J. Numer. Meth. Eng. 86, 155–181 (2011)CrossRefGoogle Scholar
  8. 8.
    Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647 (2013)CrossRefGoogle Scholar
  9. 9.
    Chaturantabut, S., Sorensen, D.: Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media. Math. Comput. Model. Dyn. Syst. 17(4), 337–353 (2011).  https://doi.org/10.1080/13873954.2011.547660 CrossRefGoogle Scholar
  10. 10.
    Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)CrossRefGoogle Scholar
  11. 11.
    Corigliano, A., Dossi, M., Mariani, S.: Model order reduction and domain decomposition strategies for the solution of the dynamic elastic–plastic structural problem. Comput. Methods Appl. Mech. Eng. 290, 127–155 (2015)CrossRefGoogle Scholar
  12. 12.
    Coussy, O.: Poromechanics. Wiley, New York (2004)Google Scholar
  13. 13.
    Dean, R., Gai, X., Stone, C., Minkoff, S.: A comparison of techniques for coupling porous flow and geomechanics. No. 79709 in SPE Reservoir Simulation Symposium. SPE, Houston (2003)Google Scholar
  14. 14.
    Enriquez-Tenorio, O., Knorr, A., Zhu, D., Hill, D.: Relationships Between Mechanical Properties and Fracturing Conductivity for the Eagle Ford Shale. no. 181858 in asia pacific hydraulic fracturing conference SPE (2016)Google Scholar
  15. 15.
    Everson, R., Sirovich, L.: Karhunen–Loeve procedure for gappy data. JOSA A 12(8), 1657–1664 (1995)CrossRefGoogle Scholar
  16. 16.
    Florez, H.: Domain Decomposition Methods for Geomechanics. Ph.D. thesis, The University of Texas at Austin (2012)Google Scholar
  17. 17.
    Florez, H.: Applications of Model-Order Reduction to Thermo-Poroelasticity. In: 51St US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2017)Google Scholar
  18. 18.
    Florez, H.: Linear Thermo-Poroelasticity and Geomechanics, chap. 10, pp. 223–242. in Finite Element Method - Simulation, Numerical Analysis and Solution Techniques, editor R. Pacurar. InTech Open.  https://doi.org/10.5772/intechopen.71873. ISBN 978-953-51-3849-5 (2018)
  19. 19.
    Florez, H.: A Novel Mesh Generation Algorithm Based on the Elasticity Operator. To Appear J. Comput. Phys. 1, 1–20 (2019)Google Scholar
  20. 20.
    Florez, H., Argáez, M.: A model-order reduction method based on wavelets and POD to solve nonlinear transient and steady-state continuation problems. Appl. Math. Model. 53, 12–31 (2018)CrossRefGoogle Scholar
  21. 21.
    Florez, H., Argáez, M.: A Reduced Order Gauss-Newton Method for Nonlinear Problems Based on Compressed Sensing for PDE Applications, chap. 1, pp. 1–20. in Nonlinear Systems - Volume 1, editor M. Reyhanoglu. InTech Open. https://www.intechopen.com. ISBN 978-953-51-6134-9 (2018)
  22. 22.
    Florez, H., Ceberio, M.: A Novel Mesh Generation Algorithm for Field-Level Coupled Flow and Geomechanics Simulations. In: 50Th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, Houston (2016)Google Scholar
  23. 23.
    Florez, H., Ceberio, M., Bravo, L., et al.: Uncertainty Quantification in Dynamic Systems with Applications to Combustion-related Problems: Analysis, Approaches, and Challenges. In: Joint Propulsion Conference. AIAA Propulsion and Energy Forum, Cincinnati.  https://doi.org/10.2514/6.2018-4920 (2018)
  24. 24.
    Florez, H., Gildin, E.: Model-order reduction applied to coupled flow and geomechanics. In: Proceedings of the ECMOR XVI - 16th European Conference on the Mathematics of Oil Recovery. Barcelona (2018)Google Scholar
  25. 25.
    Florez, H., Gildin, E.: Model-Order Reduction of Coupled Flow and Geomechanics in Ultra-Low Permeability (ULP) Reservoirs. No. 193911 in SPE Reservoir Simulation Conference, Galveston, Texas (2019)Google Scholar
  26. 26.
    Florez, H., Manzanilla-Morillo, R., Florez, J., Wheeler, M. F.: Spline-based reservoir’s geometry reconstruction and mesh generation for coupled flow and mechanics simulation. Comput. Geosci. 18(6), 949–967 (2014)CrossRefGoogle Scholar
  27. 27.
    Florez, H., Wheeler, M.: A mortar method based on NURBS for curved interfaces. Comput. Methods Appl. Mech. Engrg. 310, 535–566 (2016).  https://doi.org/10.1016/j.cma.2016.07.030 CrossRefGoogle Scholar
  28. 28.
    Florez, H., Wheeler, M., Rodriguez, A.: A Mortar Method Based on NURBS for Curved Interfaces Proceedings of the 13Th European Conference on the Mathematics of Oil Recovery (ECMOR XIII), Biarritz, France (2012)Google Scholar
  29. 29.
    Florez, H., Wheeler, M., Rodriguez, A., Monteagudo, J.: Domain Decomposition Methods Applied to Coupled Flow-Geomechanics Reservoir Simulation. No. 141596 in SPE Reservoir Simulation Symposium. The Woodlands, Texas (2011)Google Scholar
  30. 30.
    Freifeld, B., Zakim, S., Pan, L., Cutright, B., Sheu, M., Doughty, C., Held, T.: Geothermal energy production coupled with CCS: a field demonstration at the SECARB Cranfield site, Cranfield, Mississippi, USA. Energy Procedia 37, 6595–6603 (2013)CrossRefGoogle Scholar
  31. 31.
    Gai, X.: A Coupled Geomechanics and Reservoir Flow Model on Parallel Computers. Ph.D. Thesis, The University of Texas at Austin (2004)Google Scholar
  32. 32.
    Ghasemi, M., Gildin, E.: Localized model order reduction in porous media flow simulation. J. Pet. Sci. Eng. 145, 689–703 (2016)CrossRefGoogle Scholar
  33. 33.
    Ghommem, M., Gildin, E., Ghasemi, M.: Complexity reduction of multiphase flows in heterogeneous porous media. SPE Journal (2015)Google Scholar
  34. 34.
    Gunawan, F.E.: Levenberg Marquardt Iterative Regularization for the Pulse-Type Impact-Force Reconstruction, vol. 331.  https://doi.org/10.1016/j.jsv.2012.07.025. http://www.sciencedirect.com/science/article/pii/S0022460X12005512 (2012)
  35. 35.
    He, J., Durlofsky, L. J.: Reduced-order modeling for compositional simulation by use of trajectory piecewise linearization. SPE J. 19(05), 858–872 (2014)CrossRefGoogle Scholar
  36. 36.
    Hernández, J., Oliver, J., Huespe, A. E., Caicedo, M., Cante, J.: High-performance model reduction techniques in computational multiscale homogenization. Comput. Methods Appl. Mech. Eng. 276, 149–189 (2014)CrossRefGoogle Scholar
  37. 37.
    Kerfriden, P., Gosselet, P., Adhikari, S., Bordas, S.: Bridging proper orthogonal decomposition methods and augmented Newton–Krylov algorithms: An adaptive model order reduction for highly nonlinear mechanical problems. Comput. Methods Appl. Mech. Eng. 200, 850–866 (2011)CrossRefGoogle Scholar
  38. 38.
    Kerfriden, P., Passieux, J. C., Bordas, S. P. A.: Local/global model order reduction strategy for the simulation of quasi-brittle fracture. Int. J. Numer. Methods Eng. 89(2), 154–179 (2012)CrossRefGoogle Scholar
  39. 39.
    Killough, J., et al.: Ninth Spe Comparative Solution Project: a Reexamination of Black-Oil Simulation. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (1995)Google Scholar
  40. 40.
    Kim, J., Tchelepi, H., Juanes, R.: Stability; Accuracy and Efficiency of Sequential Methods for Coupled Flow and Geomechanics. No 119084 In 2009 SPE Reservoir Simulation Symposium. SPE, The Woodlands, Texas, USA (2009)Google Scholar
  41. 41.
    Kim, J., Tchelepi, H. A., Juanes, R., et al.: Rigorous coupling of geomechanics and multiphase flow with strong capillarity. SPE J. 18(06), 1–123 (2013)CrossRefGoogle Scholar
  42. 42.
    Kováčik, J.: Correlation between Young’s modulus and porosity in porous materials. J. Mater. Sci. Lett. 18(13), 1007–1010 (1999)CrossRefGoogle Scholar
  43. 43.
    Lewis, R., Schrefler, B.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2x. Wiley, New York (1998)Google Scholar
  44. 44.
    Lie, K. A., Krogstad, S., Ligaarden, I. S., Natvig, J. R., Nilsen, H. M., Skaflestad, B.: Open-source matlab implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012).  https://doi.org/10.1007/s10596-011-9244-4 CrossRefGoogle Scholar
  45. 45.
    Longuemare, P.: Geomechanics in reservoir simulation: Overview of coupling methods and field case study. Oil Gas Sci. Technol. Rev. IFP 57, 471–483 (2002)CrossRefGoogle Scholar
  46. 46.
    Lu, S., Ren, T., Gong, Y., Horton, R.: An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J. 71(1), 8–14 (2007)CrossRefGoogle Scholar
  47. 47.
    Mandel, J.: Consolidation des sols (etude mathhatique). Geotechnique 3, 287–299 (1953)CrossRefGoogle Scholar
  48. 48.
    Marquardt, D.W.: An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963). http://www.jstor.org/stable/2098941 CrossRefGoogle Scholar
  49. 49.
    Minkoff, S., Stone, C., Bryant, S., Peszynska, M., Wheeler, M.: Coupled fluid flow and geomechanical deformation modeling. J. Pet. Sci. Eng. 38, 37–56 (2003)CrossRefGoogle Scholar
  50. 50.
    Mokhtari, M., Honarpour, M, Tutuncu, A, Boitnott, G: Acoustical and Geomechanical Characterization of eagle ford shale-anisotropy, Heterogeneity and Measurement Scale. No. 170707 in Annual Technical Conference and Exhibition. SPE (2014)Google Scholar
  51. 51.
    Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Model order reduction for hyperelastic materials. Int. J. Numer. Methods Eng. 81(9), 1180–1206 (2010)Google Scholar
  52. 52.
    Niroomandi, S., Alfaro, I., González, D., Cueto, E., Chinesta, F.: Model order reduction in hyperelasticity: a proper generalized decomposition approach. Int. J. Numer. Methods Eng. 96(3), 129–149 (2013)Google Scholar
  53. 53.
    Pao, W., Lewis, R., Masters, I.: A fully coupled hydro-thermo-poro-mechanical model for black oil reservoir simulation. Int. J. Numer. Anal. Meth. Geomech. 25, 1229–1256 (2001)CrossRefGoogle Scholar
  54. 54.
    Phillips, P.: Finite element methods in linear poroelasticity: Theoretical and computational results. Ph.D. thesis, The University of Texas at Austin (2005)Google Scholar
  55. 55.
    Roussel, N., Florez, H., Rodriguez, A.A.: Hydraulic Fracture Propagation from Infill Horizontal Wells. In: SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana. Society of Petroleum Engineers.  https://doi.org/10.2118/166503-MS (2013)
  56. 56.
    Sanderson, C., Curtin, R.: Armadillo: a template-based c++ library for linear algebra. J. Open Sour. Softw. 1(2), 26–32 (2016)CrossRefGoogle Scholar
  57. 57.
    Tan, X., Gildin, E., Florez, H., Trehan, S., Yang, Y., Hoda, N.: Trajectory-based DEIM (TDEIM) model reduction applied to reservoir simulation. Comput. Geosci. 23(1), 35–53 (2019)CrossRefGoogle Scholar
  58. 58.
    Tan, X., Gildin, E., Trehan, S., Yang, Y., Hoda, N., et al.: Trajectory-Based DEIM TDEIM Model Reduction Applied to Reservoir Simulation. In: SPE Reservoir Simulation Conference. Society of Petroleum Engineers (2017)Google Scholar
  59. 59.
    Vosteen, H. D., Schellschmidt, R.: Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys. Chem. Earth, Parts A/B/C 28(9-11), 499–509 (2003)CrossRefGoogle Scholar
  60. 60.
    Walton, S., Hassan, O., Morgan, K.: Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions. Appl. Math. Model. 37(20–21), 8930–8945 (2013)CrossRefGoogle Scholar
  61. 61.
    Winget, J. M., Hughes, T. J.: Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies. Comput. Methods Appl. Mech. Eng. 52(1-3), 711–815 (1985)CrossRefGoogle Scholar
  62. 62.
    Yin, S., Dusseault, M. B., Rothenburg, L.: Thermal reservoir modeling in petroleum geomechanics. Int. J. Numer. Anal. Meth. Geomech. 33, 449–485 (2009)CrossRefGoogle Scholar
  63. 63.
    Yoon, H., Kim, J., et al.: Rigorous Modeling of Coupled Flow and Geomechanics in Largely Deformable Anisotropic Geological Systems. In: 50Th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2016)Google Scholar
  64. 64.
    Yoon, S., Alghareeb, Z. M., Williams, J.R., et al.: Hyper-Reduced-Order Models for Subsurface Flow Simulation. SPE J. 21(06), 2–128 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Petroleum EngineeringTexas A & M UniversityCollege StationUSA

Personalised recommendations