Advertisement

Bayesian analysis of the impact of rainfall data product on simulated slope failure for North Carolina locations

  • Soni YatheendradasEmail author
  • Dalia Kirschbaum
  • Grey Nearing
  • Jasper A. Vrugt
  • Rex L. Baum
  • Rick Wooten
  • Ning Lu
  • Jonathan W. Godt
Original Paper
  • 34 Downloads

Abstract

In the past decades, many different approaches have been developed in the literature to quantify the load-carrying capacity and geotechnical stability (or the factor of safety, Fs) of variably saturated hillslopes. Much of this work has focused on a deterministic characterization of hillslope stability. Yet, simulated Fs values are subject to considerable uncertainty due to our inability to characterize accurately the soil mantle’s properties (hydraulic, geotechnical, and geomorphologic) and spatiotemporal variability of the moisture content of the hillslope interior. This is particularly true at larger spatial scales. Thus, uncertainty-incorporating analyses of physically based models of rain-induced landslides are rare in the literature. Such landslide modeling is typically conducted at the hillslope scale using gauge-based rainfall forcing data with rather poor spatiotemporal coverage. For regional landslide modeling, the specific advantages and/or disadvantages of gauge-only, radar-merged and satellite-based rainfall products are not clearly established. Here, we compare and evaluate the performance of the Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis (TRIGRS) model for three different rainfall products using 112 observed landslides in the period between 2004 and 2011 from the North Carolina Geological Survey database. Our study includes the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis Version 7 (TMPA V7), the North American Land Data Assimilation System Phase 2 (NLDAS-2) analysis, and the reference “truth” Stage IV precipitation. TRIGRS model performance was rather inferior with the use of literature values of the geotechnical parameters and soil hydraulic properties from ROSETTA using soil textural and bulk density data from SSURGO (Soil Survey Geographic database). The performance of TRIGRS improved considerably after Bayesian estimation of the parameters with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm using Stage IV precipitation data. Hereto, we use a likelihood function that combines binary slope failure information from landslide event and “null” periods using multivariate frequency distribution-based metrics such as the false discovery and false omission rates. Our results demonstrate that the Stage IV-inferred TRIGRS parameter distributions generalize well to TMPA and NLDAS-2 precipitation data, particularly at sites with considerably larger TMPA and NLDAS-2 rainfall amounts during landslide events than null periods. TRIGRS model performance is then rather similar for all three rainfall products. At higher elevations, however, the TMPA and NLDAS-2 precipitation volumes are insufficient and their performance with the Stage IV-derived parameter distributions indicates their inability to accurately characterize hillslope stability.

Keywords

Slope stability Physically based model Sensitivity Satellite-based rain Calibration 

Mathematics Subject Classification (2010)

5 (Probability Geosciences) 7 (Hydrology) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge David Giordano (NC OneMap Database Administrator) for providing us the 20-ft DEM for the entire state of North Carolina on August 4, 2015, Marcel Schaap (University of Arizona) for providing the ROSETTA Python code, and Thomas Stanley for help with linking the SSURGO tables in Microsoft Access. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Funding Information

This work was partially funded by the following NASA grants: NNH11ZDA001N-NIP (PI: Dr. Dalia Kirschbaum), NNH15ZDA001N-PMM (PI: Dr. Dalia Kirschbaum), and NNX12AO19G (PI: Prof. Ning Lu).

References

  1. 1.
    Croizer, M.J.: Landslides: Causes, Consequences and Environment, p 252. Croom Helm Ltd., Kent (1986)Google Scholar
  2. 2.
    Sidle, R.C., Ochiai, H: Landslides: processes, prediction, and land use. Water Res Monogr Ser 18, p 312. AGU, Washington DC (2006)CrossRefGoogle Scholar
  3. 3.
    Salciarini, D., Godt, J.W., Savage, W.Z., Baum, R.L., Conversini, P.: Modeling landslide recurrence in Seattle, Washington, USA. Eng. Geol. 102, 227–237 (2008).  https://doi.org/10.1016/j.enggeo.2008.03.013 CrossRefGoogle Scholar
  4. 4.
    Baum, R.L., Godt, J.W., Savage, W.Z.: Estimating the timing and location of shallow rainfall—induced landslides using a model for transient, unsaturated infiltration. J. Geophys. Res. 115, F03013 (2010).  https://doi.org/10.1029/2009JF001321 CrossRefGoogle Scholar
  5. 5.
    Apip, T.K., Yamashiki, Y., Sassa, K., Ibrahim, A.B., Fukuoka, H.: A distributed hydrological–geotechnical model using satellite-derived rainfall estimates for shallow landslide prediction system at a catchment scale. Landslides 7, 237–258 (2010).  https://doi.org/10.1007/s10346-010-0214-z CrossRefGoogle Scholar
  6. 6.
    NCAR/EOL/NSF, 2016: NCEP/EMC 4KM gridded data (GRIB) Stage IV precipitation data provided by NCAR/EOL under sponsorship of NSF. Online at http://data.eol.ucar.edu/codiac/dss/id=21.093
  7. 7.
    Huffman, G.J., et al.: The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).  https://doi.org/10.1175/JHM560.1 CrossRefGoogle Scholar
  8. 8.
    Huffman, GJ., Bolvin, D.T.: Real-time TRMM multi-satellite precipitation analysis data set documentation. Online at ftp://trmmopen.gsfc.nasa.gov/pub/merged/V7Documents/3B4XRT_doc_V7.pdf (2012)
  9. 9.
    Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., Mocko, D.: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. intercomparison and application of model products. J. Geophys. Res. 117, D03109 (2012)Google Scholar
  10. 10.
    Xia, Y., Mitchell, K., Ek, M., Cosgrove, B., Sheffield, J., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Duan, Q., Lohmann, D.: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. validation of model-simulated streamflow. J. Geophys. Res. 117, D03110 (2012)Google Scholar
  11. 11.
    Almeida, S., Holcombe, E.A., Pianosi, F., Wagener, T.: Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change. Nat. Hazards Earth Syst. Sci. 17, 225–241 (2017).  https://doi.org/10.5194/nhess-17-225-2017 CrossRefGoogle Scholar
  12. 12.
    Gomes, G.J.C., Vrugt, J.A., Vargas, E. A. Jr., Camargo, J.T., Velloso, R.Q., Van Genuchten, M. Th.: The role of uncertainty in bedrock depth and hydraulic properties on the stability of a variably-saturated slope. Comput. Geotech. 88, 222–241 (2017).  https://doi.org/10.1016/j.compgeo.2017.03.016 CrossRefGoogle Scholar
  13. 13.
    Hamm, N.A.S., Hall, J.W., Anderson, M.G.: Variance-based sensitivity analysis of the probability of hydrologically induced slope stability. Comput. Geosci. 32, 803–817 (2006).  https://doi.org/10.1016/j.cageo.2005.10.007 CrossRefGoogle Scholar
  14. 14.
    Frattini, P, Crosta, G, Sosio, R.: Approaches for defining thresholds and return periods for rainfall-triggered shallow landslides. Hydrol. Process. 23, 1444–1460 (2009).  https://doi.org/10.1002/hyp.7269 CrossRefGoogle Scholar
  15. 15.
    Arnone, E., Dialynas, Y.G., Noto, L.V., Bras, R.L.: Accounting for soils parameter uncertainty in a physically based and distributed approach for rainfall-triggered landslides. Hydrol. Process. 30, 927–944 (2016).  https://doi.org/10.1002/hyp.10609 CrossRefGoogle Scholar
  16. 16.
    Gupta, H.V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., Andréassian, V.: Large-sample hydrology: a need to balance depth with breadth. Hydrol. Earth Syst. Sci. 18, 463–477 (2014).  https://doi.org/10.5194/hess-18-463-2014 CrossRefGoogle Scholar
  17. 17.
    Wooten, R.M., Gillon, K.A., Witt, A.C., Latham, R.S., Douglas, T.J., Bauer, J.B., Fuemmeler, S.J., Lee, L.G.: Geologic, geomorphic, and meteorological aspects of debris flows triggered by hurricanes Frances and Ivan during September 2004 in the Southern Appalachian Mountains of Macon County, North Carolina (southeastern USA). Landslides 5, 31–44 (2008).  https://doi.org/10.1007/s10346-007-0109-9 CrossRefGoogle Scholar
  18. 18.
    Soil Survey Staff: Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database. Available online at http://sdmdataaccess.nrcs.usda.gov/. Accessed [09/2015] (2015)
  19. 19.
    Lin, Y.: GCIP/EOP Surface: Precipitation NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data, Version 1.0. UCAR/NCAR – Earth Observing Laboratory. http://data.eol.ucar.edu/dataset/21.093. Accessed 26 Sep 2016 (2011)
  20. 20.
    Huffman, G.J., Adler, R.F., Bolvin, D.T., Nelkin, E.J.: The TRMM Multi-satellite Precipitation Analysis (TMPA). In: Hossain, F., Gebremichael, M (eds.) Satellite Rainfall Applications for Surface Hydrology, pp 3–22. Springer (2010)Google Scholar
  21. 21.
    Chen, M., Shi, W., Xie, P., Silva, V.B.S., Kousky, V.E., Wayne Higgins, R., Janowiak, J.E.: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. 113, D04110 (2008).  https://doi.org/10.1029/2007JD009132 Google Scholar
  22. 22.
    Xie, P., Yatagai, A., Chen, M., Hayasaka, T., Fukushima, Y., Liu, C., Yang, S.: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeorol. 8, 607 (2007)CrossRefGoogle Scholar
  23. 23.
    Daly, C., Neilson, R.P., Phillips, D.L.: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol. 33, 140–158 (1994)CrossRefGoogle Scholar
  24. 24.
    Joyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P.: CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 5, 487–503 (2004)CrossRefGoogle Scholar
  25. 25.
    Higgins, R.W., Janowiak, J.E., Yao, Y.: A gridded hourly precipitation data base for the United States (1963–1993). NCEP/Climate Prediction Center Atlas No. 1. Online at http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/1/index.html (1996)
  26. 26.
    Mesinger, F., et al.: North American regional reanalysis. Bull. Amer. Meteor. Soc. 87(3), 343–360 (2006).  https://doi.org/10.1175/BAMS-87-3-343 CrossRefGoogle Scholar
  27. 27.
    Alvioli, M., Baum, R.L.: Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environ. Model. Softw. 81, 122–135 (2016).  https://doi.org/10.1016/j.envsoft.2016.04.002 CrossRefGoogle Scholar
  28. 28.
    Srivastava, R., Yeh, T.-C. J.: Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour. Res. 27, 753–762 (1991)CrossRefGoogle Scholar
  29. 29.
    Taylor, D.W.: Fundamentals of Soil Mechanics. Wiley, New York (1948). (ISBN-13: 978-1258768928). 700ppCrossRefGoogle Scholar
  30. 30.
    Lu, N., Godt, J.: Infinite slope stability under steady unsaturated seepage conditions. Water Resour. Res. 44, W11404 (2008).  https://doi.org/10.1029/2008WR006976 CrossRefGoogle Scholar
  31. 31.
    Schaap, M.G., Leij, F.J., van Genuchten, M.Th.: Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 62, 847–855 (1998)CrossRefGoogle Scholar
  32. 32.
    Schaap, M.G., Leij, F.J., van Genuchten, M.Th.: Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251, 163–176 (2001)CrossRefGoogle Scholar
  33. 33.
    Melchiorre, C, Frattini, P.: Modelling probability of rainfall-induced shallow landslides in a changing climate, Otta, Central Norway. Clim. Chang. 113, 413–436 (2012).  https://doi.org/10.1007/s10584-011-0325-0 CrossRefGoogle Scholar
  34. 34.
    Benson, C.H.: Probability distributions for hydraulic conductivity of compacted soil liners. J. Geotech. Geoenviron. Eng. 119(3), 471–186 (1993)CrossRefGoogle Scholar
  35. 35.
    Iverson, R.M., Major, J.J.: Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, Northwestern California—physical interpretation of empirical relations. Geol. Soc. Am. Bull. 99, 579–594 (1987)CrossRefGoogle Scholar
  36. 36.
    Baum, R.L., Reid, M.E.: Geology, hydrology, and mechanics of a slowmoving, clayrich landslide, Honolulu, Hawaii, Rev. Eng. Geol., vol. X, pp. 79–105 Geol. Soc. Am., Boulder (1995)Google Scholar
  37. 37.
    Lumb, P.: Applications of statistics in soil mechanics. In: Lee, JK (ed.) Soil Mechanics. New Horizons. American Elsevier, London (1974)Google Scholar
  38. 38.
    Scharnagl, B, Vrugt, JA, Vereecken, H, Herbst, M.: Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters. Hydrol. Earth Syst. Sci. 15 (10), 3043—59 (2011).  https://doi.org/10.5194/hess-15-3043-2011 CrossRefGoogle Scholar
  39. 39.
    Davis, ROE, Bennett, HH: Grouping of soils on the basis of mechanical analysis. United States Department of Agriculture Departmental Circulation No. 419 (1927)Google Scholar
  40. 40.
    Warrington, D.C.: Soil mechanics: NAVFAC Design Manual 7.01, United States Naval Facilities Engineering Command, 380 pp (1986)Google Scholar
  41. 41.
    Langejan, A.: Some aspects of the safety factor in soil mechanics considered as a problem of probability. In: Sixt International Conference on Soil Mechanics and Foundation Engineering: Montreal, pp 500–502 (1965)Google Scholar
  42. 42.
    Tobutt, DC: Monte Carlo simulation methods for slope stability. Comput. Geosci. 8, 199–208 (1982).  https://doi.org/10.1016/0098-3004(82)90021-8 CrossRefGoogle Scholar
  43. 43.
    Rackwitz, R.: Reviewing probabilistic soils modelling. Comput. Geotech. 26, 199–223 (2000).  https://doi.org/10.1016/S0266-352X(99)00039-7 CrossRefGoogle Scholar
  44. 44.
    Simoni, S, Zanotti, F, Bertoldi, G, Rigon, R.: Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS. Hydrol. Process. 22, 532–545 (2008).  https://doi.org/10.1002/hyp.6886 CrossRefGoogle Scholar
  45. 45.
    Dettinger, M, Wilson, J.: First order analysis of uncertainty in numerical models of groundwater flow part: 1. Mathematical development. Water Resour. Res. 17, 149–161 (1961)CrossRefGoogle Scholar
  46. 46.
    Matsuo, M, Kuroda, K.: Probabilistic approach to design of embankments. Soils Found. 14, 1–17 (1974)CrossRefGoogle Scholar
  47. 47.
    Christian, J, Ladd, C, Baecher, G.: Reliability applied to slope stability analysis. J. Geotech. Eng. 120, 2180–2207 (1994).  https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2180) CrossRefGoogle Scholar
  48. 48.
    Malkawi, AI, Hassan, WF, Abdulla, FA: Uncertainty and reliability analysis applied to slope stability. Struct. Saf. 22, 161–187 (2000)CrossRefGoogle Scholar
  49. 49.
    Abbaszadeh, M, Shahriar, K, Sharifzadeh, M, Heydari, M.: Uncertainty and reliability analysis applied to slope stability: a case study from Sungun copper mine. Geotech. Geol. Eng. 29, 581–596 (2011).  https://doi.org/10.1007/s10706-011-9405-1 CrossRefGoogle Scholar
  50. 50.
    Lumb, P.: Safety factors and the probability distribution of soil strength. Can. Geotech. J. 7, 225–242 (1970)CrossRefGoogle Scholar
  51. 51.
    DeRose, R.C., Trustrum, N.A., Blaschke, P.M.: Geomorphic change implied by regolith-slope relationships on steepland hillslopes, Taranaki, New Zealand. Catena 18(5), 489–514 (1991).  https://doi.org/10.1016/0341-8162(91)90051-X CrossRefGoogle Scholar
  52. 52.
    DeRose, R.C.: Relationships between slope morphology, regolith depth, and the incidence of shallow landslides in eastern Taranaki Hill Country, Z. Geomorphol. Supp. 105, 49–60 (1996)Google Scholar
  53. 53.
    Boer, M., Barrio, G.D., Puigdefabres, J.: Mapping soil depth classes in dry Mediterranean areas using terrain attributes derived from a digital elevation model. Geoderma 72(1–2), 99–118 (1996).  https://doi.org/10.1016/0016-7061(96)00024-9 CrossRefGoogle Scholar
  54. 54.
    Ziadat, F.: Prediction of soil depth from digital terrain data by integrating statistical and visual approaches. Pedosphere 20(3), 361–367 (2010).  https://doi.org/10.1016/S1002-0160(10)60025-2 CrossRefGoogle Scholar
  55. 55.
    Wilford, J., Thomas, M.: Predicting regolith thickness in the complex weathering setting of the central Mt Lofty Ranges, South Australia. Geoderma 206, 1–13 (2013).  https://doi.org/10.1016/j.geoderma.2013.04.002 CrossRefGoogle Scholar
  56. 56.
    Yang, Q., Zhang, F., Jiang, Z., Li, W., Zhang, J., Zeng, F., Li, H.: Relationship between soil depth and terrain attributes in karst region in Southwest China. J. Soils Sediment. 14(9), 1568–1576 (2014).  https://doi.org/10.1007/s11368-014-0904-6 CrossRefGoogle Scholar
  57. 57.
    Duncan, J.M., Wright, S.G., Brandon, T.L.: Soil Strength and Slope Stability, p 336. Wiley, New York (2014)Google Scholar
  58. 58.
    Vrugt, J.A., ter Braak, C.J.F., Clark, M.P., Hyman, J.M., Robinson, B.A.: Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res. 44, W00B09 (2008).  https://doi.org/10.1029/2007WR006720 CrossRefGoogle Scholar
  59. 59.
    Vrugt, J.A., ter Braak, C.J.F., Diks, C.G.H., Higdon, D., Robinson, B.A., Hyman, J.M.: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul. 10(3), 273–290 (2009)CrossRefGoogle Scholar
  60. 60.
    Laloy, E., Rogiers, B., Vrugt, J.A., Jacques, D., Mallants, D.: Efficient posterior exploration of a high-dimensional groundwater model from two-stage Markov chain Monte Carlo simulation and polynomial chaos expansion, Water Resour. Res. 49(5), 2664–2682 (2013).  https://doi.org/10.1002/wrcr.20226 CrossRefGoogle Scholar
  61. 61.
    Linde, N., Vrugt, J.A.: Distributed soil moisture from crosshole ground penetrating radar travel times using stochastic inversion. Vadose Zone J. 12(1).  https://doi.org/10.2136/vzj2012.0101 (2013)
  62. 62.
    Lochbühler, T., Breen, S.J., Detwiler, R.L., Vrugt, J.A., Linde, N.: Probabilistic electrical resistivity tomography for a CO2 sequestration analog. J. Appl. Geophys. 107, 80–92 (2014).  https://doi.org/10.1016/j.jappgeo.2014.05.013 CrossRefGoogle Scholar
  63. 63.
    ter Braak, C.J.F., Vrugt, J.A.: Differential evolution Markov chain with snooker updater and fewer chains. Stat. Comput.  https://doi.org/10.1007/s11222-008-9104-9 (2008)
  64. 64.
    Gelman, A.G., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992)CrossRefGoogle Scholar
  65. 65.
    Brooks, S.P., Gelman, A.: General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998)Google Scholar
  66. 66.
    Yatheendradas, S., Wagener, T., Gupta, H., Unkrich, C., Goodrich, D., Schaffner, M., Stewart, A.: Understanding uncertainty in distributed flash flood forecasting for semiarid regions. Water Resour. Res. 44, W05S19 (2008).  https://doi.org/10.1029/2007WR005940 CrossRefGoogle Scholar
  67. 67.
    Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69, 066138 (2004)CrossRefGoogle Scholar
  68. 68.
    Darbellay, G.A., Vajda, I.: Estimation of the information by an adaptive partitioning of the observation space. IEEE Trans. Inf. Theory 45, 1315 (1999)CrossRefGoogle Scholar
  69. 69.
    Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134 (1986)CrossRefGoogle Scholar
  70. 70.
    Barros, A.P., Lettenmaier, D.P.: Dynamic modeling of orographically induced precipitation. Rev. Geophys. 32, 265–284 (1994).  https://doi.org/10.1029/94RG00625 CrossRefGoogle Scholar
  71. 71.
    Vicente, G.A., Davenport, J.C., Scofield, R.A.: The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution. Int. J. Remote Sens. 23, 221–230 (2002).  https://doi.org/10.1080/01431160010006935 CrossRefGoogle Scholar
  72. 72.
    Adam, J.C., Clark, E.A., Lettenmaier, D.P.: Correction of global precipitation products for orographic effects. J. Clim. 19, 15–38 (2006)CrossRefGoogle Scholar
  73. 73.
    Alvioli, M., Baum, R.L.: Serial and parallel versions of the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model (TRIGRS): U.S. Geological Survey software release.  https://doi.org/10.5066/F73J3B27 (2016)
  74. 74.
    Zieher, T., Rutzinger, M., Schneider-Muntau, B., Perzl, F., Leidinger, D., Formayer, H., Geitner, C.: Sensitivity analysis and calibration of a dynamic physically based slope stability model. Nat. Hazards Earth Syst. Sci. 17, 971–992 (2017).  https://doi.org/10.5194/nhess-17-971-2017 CrossRefGoogle Scholar
  75. 75.
    Beven, K., Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 249, 11–29 (2001).  https://doi.org/10.1016/S0022-1694(01)00421-8 CrossRefGoogle Scholar
  76. 76.
    Formetta, G., Capparelli, G., Versace, P.: Evaluating performance of simplified physically based models for shallow landslide susceptibility. Hydrol. Earth Syst. Sci. 20, 4585—4603 (2016).  https://doi.org/10.5194/hess-20-4585-2016 CrossRefGoogle Scholar
  77. 77.
    Mergili, M., Fischer, J.-T., Krenn, J., Pudasaini, S.P.: r.avaflowv1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geosci. Model Dev. 10, 553–569 (2017).  https://doi.org/10.5194/gmd-10-553-2017 CrossRefGoogle Scholar
  78. 78.
    Green, D.M., Swets, JA: Signal Detection Theory and Psychophysics. Wiley, New York (1966). ISBN 0-471-32420-5Google Scholar
  79. 79.
    Botev, Z.I.: The normal law under linear restrictions: simulation and estimation via minimax tilting. Journal of the Royal Statistical Society, Series B. arXiv:1603.04166.  https://doi.org/10.1111/rssb.12162 (2016)
  80. 80.
    Breslaw, J.A.: Random sampling from a truncated multivariate normal distribution. Appl. Math. Lett. 7(1), 1–6 (1994)CrossRefGoogle Scholar
  81. 81.
    Damien, P., Walker, S.G.: Sampling truncated normal, beta, and gamma densities. J. Comput. Graph. Stat. 10(2), 206–215 (2001).  https://doi.org/10.1198/10618600152627906 CrossRefGoogle Scholar
  82. 82.
    Anderson, M.G.: A feasibility study in mathematical modelling of slope hydrology and stability. Report to Geotechnical Control Office Civil Engineering Services Department, Hong Kong (1990)Google Scholar
  83. 83.
    Kirschbaum, D.B., Adler, R., Hong, Y., Kumar, S., Peters-Lidard, C., Lerner-Lam, A.: Advances in landslide nowcasting: evaluation of a global and regional modeling approach. Environ. Earth Sci. 66, 1683–1696 (2012).  https://doi.org/10.1007/s12665-011-0990-3 CrossRefGoogle Scholar
  84. 84.
    Formetta, G., Capparelli, G., Rigon, R., Versace, P.: Physically based landslide susceptibility models with different degree of complexity: calibration and verification. In: Proceedings of the 7th International Congress on Environmental Modelling and Software, 15–19 June, San Diego (2014)Google Scholar
  85. 85.
    Pianosi, F., Sarrazin, F., Wagener, T.: A Matlab toolbox for global sensitivity analysis. Environ. Model Softw. 70, 80–85 (2015)CrossRefGoogle Scholar
  86. 86.
    Ling, C.X., Sheng, V.S.: Class imbalance problem. In: Sammut, C, Webb, G.I. (eds.) Encyclopedia of Machine Learning. Springer, Boston (2011)Google Scholar
  87. 87.
    Laloy, E., Vrugt, J.A.: High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing. Water Resour. Res. 48, W01526 (2012).  https://doi.org/10.1029/2011WR010608 CrossRefGoogle Scholar
  88. 88.
    Vrugt, J.A., Laloy, E.: Reply to comment by Chu et al. on “High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing”. Water Resour. Res. 50, 2781–2786 (2014).  https://doi.org/10.1002/2013WR014425 CrossRefGoogle Scholar
  89. 89.
    Sadegh, M., Vrugt, J.A.: Approximation Bayesian computation using Markov chain Monte Carlo simulation: DREAM(ABC). Water Resour. Res. 50.  https://doi.org/10.1002/2014WR015386 (2014)

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  • Soni Yatheendradas
    • 1
    • 2
  • Dalia Kirschbaum
    • 2
  • Grey Nearing
    • 3
  • Jasper A. Vrugt
    • 4
    • 5
  • Rex L. Baum
    • 6
  • Rick Wooten
    • 7
  • Ning Lu
    • 8
  • Jonathan W. Godt
    • 6
  1. 1.Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkUSA
  2. 2.Hydrological Sciences LaboratoryNASA GSFCGreenbeltUSA
  3. 3.Department of Geological SciencesThe University of AlabamaTuscaloosaUSA
  4. 4.Department of Civil and Environmental Engineering, Henry Samueli School of EngineeringUniversity of CaliforniaIrvineUSA
  5. 5.Department of Earth System ScienceUniversity of CaliforniaIrvineUSA
  6. 6.Geologic Hazards Science CenterU.S. Geological SurveyGoldenUSA
  7. 7.Asheville Regional OfficeNorth Carolina Geological SurveySwannanoaUSA
  8. 8.Department of Civil & Environmental EngineeringGoldenUSA

Personalised recommendations