Computational Geosciences

, Volume 22, Issue 4, pp 1115–1134 | Cite as

Pulsating linear in situ combustion: why do we often observe oscillatory behavior?

  • Mohammad BazarganEmail author
  • Anthony R. Kovscek
Original Paper


We have studied simplified, pulsating, one-dimensional, in situ combustion processes. For two cases, with different reaction stoichiometry, oscillations in temperature, flue gas rate, and flue gas composition are demonstrated and the parameter space resulting in oscillatory behavior is identified. To understand the role of different parameters, linear stability of the problem is studied. Because linear stability analysis requires the solution of uniform front propagation, we investigated an asymptotic analytical solution of the problem. We found an original formula for the front propagation velocity. The analytical solution enabled us to define four dimensionless parameters including Zeldovich (Ze) number, Damkohler (Da) number, a specialized air-fuel ratio (B), and a ratio incorporating air and rock heat capacities (Δ1). Using linear stability analysis, we show that the stability of the problem is also governed by these four parameters. Because Δ1 ≈ 1 for typical laboratory conditions, the set of (Ze, Da, B) is used to construct the stability plane; consequently, several important design considerations are suggested. Both larger air injection rate and air enriched in oxygen increase the front propagation speed but push the system toward oscillatory behavior. Conversely, the introduction of catalysts and metal additives, that decrease the activation energy of reactions, increases the front speed and stability. Similarly, increasing the amount of fuel available for the combustion makes the design more stable and drives the combustion front to propagate more quickly.


In situ combustion Combustion tube experiment Oscillation Pulsating combustion Smoldering combustion Stability analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge Ecopetrol for their help in funding this project. We thank Dr. Franck Monmont for introducing us to the topic of oscillatory ISC. We also thank the members of the SUPRI-A (Stanford University Petroleum Research Institute) Industrial Affiliates.


  1. 1.
    Akkutlu, I.Y., Yortsos, Y.C.: The dynamics of in-situ combustion fronts in porous media. Combust. Flame 134(3), 229–247 (2003)CrossRefGoogle Scholar
  2. 2.
    Akkutlu, I.Y., Yortsos, Y.C.: The dynamics of in-situ combustion fronts in porous media. Combust. Flame 134(3), 229–247 (2003)CrossRefGoogle Scholar
  3. 3.
    Akkutlu, I.Y., Yortsos, Y.C., et al.: The dynamics of combustion fronts in porous media. In: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2000)Google Scholar
  4. 4.
    Aldushin, A.: New results in the theory of filtration combustion. Combust. Flame 94(3), 308–320 (1993)CrossRefGoogle Scholar
  5. 5.
    Aldushin, A.: Filtration combustion. Advances in combustion science: In honor of Ya B Zel’dovich(A 97-24531 05-25), Reston, VA, American Institute of Aeronautics and Astronautics. Inc(Progress Astronaut. Aeronaut. 173, 95–115 (1997)Google Scholar
  6. 6.
    Aldushin, A., Kasparyan, S.: Thermodiffusional instability of a combustion front. In: Soviet Physics Doklady. vol. 24, p. 29 (1979)Google Scholar
  7. 7.
    Aldushin, A., Kasparyan, S.: Stability of stationary filtrational combustion waves. Combust. Explosion, Shock Waves 17(6), 615–625 (1981)CrossRefGoogle Scholar
  8. 8.
    Aldushin, A., Martem’yanova, T., Merzhanov, A., Khaikin, B., Shkadinskii, K.: Autovibrational propagation of the combustion front in heterogeneous condensed media. Combust. Explosion, Shock Waves 9(5), 531–542 (1973)CrossRefGoogle Scholar
  9. 9.
    Amanam, U.U., Kovscek, A.R.: Analysis of the effects of copper nanoparticles on in-situ combustion of extra heavy-crude oil. J. Pet. Sci. Eng. 152, 406–415 (2017)CrossRefGoogle Scholar
  10. 10.
    Bazargan, M., Kovscek, A.R.: A reaction model-free approach for in situ combustion calculations: 1-kinetics prediction. Transp. Porous Media 107(2), 507–525 (2015)CrossRefGoogle Scholar
  11. 11.
    Bazargan, M., Chen, B., Cinar, M., Glatz, G., Lapene, A., Zhu, Z., Castanier, L., Gerritsen, M., Kovscek, A., et al.: A combined experimental and simulation workflow to improve predictability of in situ combustion. In: SPE Western North American Region Meeting, Society of Petroleum Engineers (2011)Google Scholar
  12. 12.
    Bazargan, M., Lapene, A., Chen, B., Castanier, L.M., Kovscek, A.R.: An induction reactor for studying crude-oil oxidation relevant to in situ combustion. Rev. Sci. Instrum. 84(7), 075,115 (2013). CrossRefGoogle Scholar
  13. 13.
    Bousaid, I., Ramey, H. Jr, et al.: Oxidation of crude oil in porous media. Soc. Pet. Eng. J. 8(02), 137–148 (1968)CrossRefGoogle Scholar
  14. 14.
    Buckmaster, J., Clavin, P., Linan, A., Matalon, M., Peters, N., Sivashinsky, G., Williams, F.: Combustion theory and modeling. Proc. Combust. Inst. 30(1), 1–19 (2005)CrossRefGoogle Scholar
  15. 15.
    Burger, B.C., Sahuquet, J.G.: Chemical Aspects of In-situ Combustion-Heat of Combustion and Kinetics. SPE Journal (1972)Google Scholar
  16. 16.
    Cinar, M., Castanier, L.M., Kovscek, A.R.: Isoconversional kinetic analysis of the combustion of heavy hydrocarbons. Energy Fuels 23(8), 4003–4015 (2009). CrossRefGoogle Scholar
  17. 17.
    Dobrego, K., Zhdanok, S., Zaruba, A.: Experimental and analytical investigation of the gas filtration combustion inclination instability. Int. J. Heat Mass Transf. 44(11), 2127–2136 (2001)CrossRefGoogle Scholar
  18. 18.
    Firsov, A., Shkadinskii, K.: Combustion of gasless compositions in the presence of heat losses. Combust. Explosion Shock Waves 23(3), 288–294 (1987)CrossRefGoogle Scholar
  19. 19.
    Ghazaryan, A., Latushkin, Y., Schecter, S., de Souza, A.J.: Stability of gasless combustion fronts in one-dimensional solids. Arch. Ration. Mech. Anal. 198(3), 981–1030 (2010)CrossRefGoogle Scholar
  20. 20.
    Glazyrin, S., Sasorov, P.: Simple model of propagating flame pulsations. Mon. Not. Royal Astron. Soc. 416(3), 2090–2095 (2011)CrossRefGoogle Scholar
  21. 21.
    Gutierrez, D., Skoreyko, F., Moore, R., Mehta, S., Ursenbach, M., et al.: The challenge of predicting field performance of air injection projects based on laboratory and numerical modelling. J. Can. Pet. Technol. 48 (04), 23–33 (2009)CrossRefGoogle Scholar
  22. 22.
    Hasċakir, B, Glatz, G., Castanier, L.M., Kovscek, A., et al.: In-situ combustion dynamics visualized with x-ray computed tomography. SPE J. 16(03), 524–536 (2011)CrossRefGoogle Scholar
  23. 23.
    Hascakir, B., Ross, C., Castanier, L.M., Kovscek, A., et al.: Fuel formation and conversion during in-situ combustion of crude oil. SPE J. 18(06), 1–217 (2013)CrossRefGoogle Scholar
  24. 24.
    He, B., Chen, Q., Castanier, L.M., Kovscek, A.R.: Improved in-situ combustion performance with metallic salt additives. In: SPE western regional meeting, Society of Petroleum Engineers (2005)Google Scholar
  25. 25.
    Ivleva, T., Merzhanov, A.: Mathematical 3d-modeling for spinning gasless combustion waves. In: Key Engineering Materials, Trans Tech Publ. vol. 217, pp. 13–20 (2002)Google Scholar
  26. 26.
    Khaikin, B., Merzhanov, A.: Theory of thermal propagation of a chemical reaction front. Combust. Explosion Shock Waves 2(3), 22–27 (1966)CrossRefGoogle Scholar
  27. 27.
    Kostin, S., Krishenik, P., Shkadinskii, K.: Experimental study of the heterogeneous filtration combustion mode. Combust. Explosion Shock Waves 50(1), 42–50 (2014)CrossRefGoogle Scholar
  28. 28.
    Kovscek, A., Castanier, L.M., Gerritsen, M., et al.: Improved predictability of in-situ-combustion enhanced oil recovery. SPE Reserv. Eval. Eng. 16(02), 172–182 (2013)CrossRefGoogle Scholar
  29. 29.
    Kumar, M., et al.: Simulation of laboratory in-situ combustion data and effect of process variations. In: SPE symposium on reservoir simulation, Society of Petroleum Engineers (1987)Google Scholar
  30. 30.
    Lebedev, A., Sukhov, G., Yarin, L.: Stability of filtration combustion. Combust. Explosion Shock Waves 12(6), 775–779 (1976)CrossRefGoogle Scholar
  31. 31.
    Lewis, B., Von Elbe, G.: Theory of flame propagation. Chem. Rev. 21(2), 347–358 (1937)CrossRefGoogle Scholar
  32. 32.
    Lin, C.Y., Chen, W.H., Lee, S.T., Culham, W.E.: Numerical Simulation of Combustion Tube Experiments and the Associated Kinetics of In-Situ Combustion Processes. SPE Journal (1984)Google Scholar
  33. 33.
    Mailybaev, A., Bruining, J., Marchesin, D.: Analysis of in situ combustion of oil with pyrolysis and vaporization. Combust. Flame 158(6), 1097–1108 (2011)CrossRefGoogle Scholar
  34. 34.
    Mailybaev, A.A., Bruining, J., Marchesin, D., et al.: Analytical formulas for in-situ combustion. SPE J. 16(03), 513–523 (2011)CrossRefGoogle Scholar
  35. 35.
    Makhviladze, G., Novozhilov, B.: Two-dimensional stability of the combustion of condensed systems. J. Appl. Mech. Techn. Phys. 12(5), 676–682 (1971)CrossRefGoogle Scholar
  36. 36.
    Maksimov, E., Merzhanov, A.: Theory of combustion of condensed substances. Combust. Explosion Shock Waves 2(1), 25–31 (1966)CrossRefGoogle Scholar
  37. 37.
    Matkowsky, B., Sivashinsky, G.: Propagation of a pulsating reaction front in solid fuel combustion. SIAM J. Appl. Math. 35(3), 465–478 (1978)CrossRefGoogle Scholar
  38. 38.
    Moin, P.: Fundamentals of engineering numerical analysis. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  39. 39.
    Moore, R., Ursenbach, M., Laureshen, C., Mehta, S.: Observation and design considerations for in-situ combustion. Petroleum Society of Canada, Canada (1997)Google Scholar
  40. 40.
    Moore, R.G., Bennion, D.W., Belgrave, J.D.M., Gie, D.N., Ursenbach, M.G.: New insights into enriched-air in-situ combustion. J. Pet. Technol. 42(07), 916–923 (1990)CrossRefGoogle Scholar
  41. 41.
    Panait-Patica, A., Serban, D., Ilie, N., Pavel, L., Barsan, N., et al.: Suplacu de barcau field-a case history of a successful in-situ combustion exploitation. In: SPE Europec/EAGE Annual Conference and Exhibition, Society of Petroleum Engineers (2006)Google Scholar
  42. 42.
    Penberthy, W.L., Ramey, H.J.: Design and operation of laboratory combustion tubes. Soc. Pet. Eng. J. 6 (02), 183–198 (1966)CrossRefGoogle Scholar
  43. 43.
    Prats, M.: Thermal Recovery. Society of Petroleum Engineers Monograph, p. 7 (1982)Google Scholar
  44. 44.
    Sarathi, P.S.: In-situ combustion handbook—principles and practices, p 73005. Technical report, National Petroleum Technology Office U.S. Department of Energy, BDM Petroleum Technologies P.O. Box 2565, Bartlesville (1999)CrossRefGoogle Scholar
  45. 45.
    Schult, D., Matkowsky, B., Volpert, V., Fernandez-Pello, A.: Forced forward smolder combustion. Combust. Flame 104(1), 1–26 (1996)CrossRefGoogle Scholar
  46. 46.
    Schult, D.A.: Matched asymptotic expansions and the closure problem for combustion waves. SIAM J. Appl. Math. 60(1), 136–155 (1999)CrossRefGoogle Scholar
  47. 47.
    Shkadinskii, K., Khaikin, B., Merzhanov, A.: Propagation of a pulsating exothermic reaction front in the condensed phase. Combust. Explosion Shock Waves 7(1), 15–22 (1971)CrossRefGoogle Scholar
  48. 48.
    STARS: CMG, COMPUTER MODELLING GROUP LTD. 450 Gears Road, Suite 600 Houston, p. 77067, (2015)
  49. 49.
    Thomas, F., Moore, R., Bennion, D., et al.: Kinetic parameters for the high-temperature oxidation of in-situ combustion coke. Journal of Canadian Petroleum Technology 24(06). (1985)
  50. 50.
    Wahle, C., Matkowsky, B., Aldushin, A.: Effects of gas-solid nonequilibrium in filtration combustion. Combust. Sci. Technol. 175(8), 1389–1499 (2003)CrossRefGoogle Scholar
  51. 51.
    Yarin, L.P., Hetsroni, G., Mosyak, A.: Combustion of two-phase reactive media. Springer Science & Business Media, Berlin (2013)Google Scholar
  52. 52.
    Zeldovich, I., Barenblatt, G.I., Librovich, V., Makhviladze, G.: Mathematical theory of combustion and explosions (1985)Google Scholar
  53. 53.
    Zeldovich, Y.B.: Selected Works of Yakov Borisovich Zeldovich, Volume I: Chemical Physics and Hydrodynanics, vol. 1. Princeton University Press, Princeton (2014)Google Scholar
  54. 54.
    Zhu, Z., Bazargan, M., Lapene, A., Gerritsen, M., Castanier, L., Kovscek, A.: Upscaling for field-scale in-situ combustion simulation. In: Society of Petroleum Engineers, (2011),

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Energy Resources Engineering DepartmentStanford UniversityStanfordUSA

Personalised recommendations