Feasibility of CO2 migration detection using pressure and CO2 saturation monitoring above an imperfect primary seal of a geologic CO2 storage formation: a numerical investigation

  • Liwei Zhang
  • Robert Dilmore
  • Argha Namhata
  • Grant Bromhal
Original paper
  • 13 Downloads

Abstract

A numerical model was developed to investigate the potential to detect fluid migration in a (homogeneous, isotropic, with constant pressure lateral boundaries) porous and permeable interval overlying an imperfect primary seal of a geologic CO2 storage formation. The seal imperfection was modeled as a single higher-permeability zone in an otherwise low-permeability seal, with the center of that zone offset from the CO2 injection well by 1400 m. Pressure response resulting from fluid migration through the high-permeability zone was detectable up to 1650 m from the centroid of that zone at the base of the monitored interval after 30 years of CO2 injection (detection limit = 0.1 MPa pressure increase); no pressure response was detectable at the top of the monitored interval at the same point in time. CO2 saturation response could be up to 774 m from the center of the high-permeability zone at the bottom of the monitored interval, and 1103 m at the top (saturation detection limit = 0.01). More than 6% of the injected CO2, by mass, migrated out of primary containment after 130 years of site performance (including 30 years of active injection) in the case where the zone of seal imperfection had a moderately high permeability (10− 17 m2 or 0.01 mD). Free-phase CO2 saturation monitoring at the top of the overlying interval provides favorable spatial coverage for detecting fluid migration across the primary seal. Improved sensitivity of detection for pressure perturbation will benefit time of detection above an imperfect seal.

Keywords

CO2 migration Fracture Permeability Pressure Carbon sequestration Monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank Dr. Zan Wang at NETL Morgantown site for her valued suggestions on improving the paper.

References

  1. 1.
    IPCC: Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2014)Google Scholar
  2. 2.
    Meinshausen, M., Meinshausen, N., Hare, W., Raper, S.C., Frieler, K., Knutti, R., Frame, D.J., Allen, M.R.: Greenhouse-gas emission targets for limiting global warming to 2 \(^{\circ }\)C. Nature 458(7242), 1158–1162 (2009)CrossRefGoogle Scholar
  3. 3.
    Shakun, J.D., Clark, P.U., He, F., Marcott, S.A., Mix, A.C., Liu, Z., Otto-Bliesner, B., Schmittner, A., Bard, E.: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484(7392), 49–54 (2012)CrossRefGoogle Scholar
  4. 4.
    Zhang, L., Dzombak, D.A., Nakles, D.V., Brunet, J.P.L., Li, L.: Reactive transport modeling of interactions between acid gas (CO2 + H2S) and pozzolan-amended wellbore cement under geologic carbon sequestration conditions. Energy Fuels 27(11), 6921–6937 (2013)CrossRefGoogle Scholar
  5. 5.
    Carbon Storage Atlas: Carbon storage atlas—fifth edition (Atlas V). Available at: http://www.netl.doe.gov/research/coal/carbon-storage/atlasv (2015)
  6. 6.
    Edlmann, K., Haszeldine, S., McDermott, C.I.: Experimental investigation into the sealing capability of naturally fractured shale caprocks to supercritical carbon dioxide flow. Environ. Earth Sci. 70(7), 3393–3409 (2013)CrossRefGoogle Scholar
  7. 7.
    Nordbotten, J.M., Celia, M.A., Bachu, S., Dahle, H.K.: Semianalytical solution for CO2 leakage through an abandoned well. Environ. Sci. Technol. 39(2), 602–611 (2005)CrossRefGoogle Scholar
  8. 8.
    Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Flemisch, B.: A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13(4), 409–434 (2009)CrossRefGoogle Scholar
  9. 9.
    Angeli, M., Soldal, M., Skurtveit, E., Aker, E.: Experimental percolation of supercritical CO2 through a caprock. Energy Procedia 1, 3351–3358 (2009)CrossRefGoogle Scholar
  10. 10.
    Wollenweber, J., Alles, A., Busch, A., Krooss, B.M., Stanjek, H., Littke, R.: Experimental investigation of the CO2 sealing efficiency of caprocks. Int. J. Greenh. Gas Control 4, 231–241 (2010)CrossRefGoogle Scholar
  11. 11.
    Busch, A., Amann, A., Bertier, P., Waschbusch, M., Kroos, B.M.: The significance of caprock sealing integrity for CO2 storage. In: SPE 139588 (2010)Google Scholar
  12. 12.
    Iding, M., Ringrose, P.: Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. Int. J. Greenh. Gas Control 4(2), 242–248 (2010)CrossRefGoogle Scholar
  13. 13.
    Andreani, M., Gouze, P., Luquot, L., Jouanna, P.: Changes in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO2 seepage. Geophys. Res. Lett. 35, L14404 (2008).  https://doi.org/10.1029/2008GL034467 CrossRefGoogle Scholar
  14. 14.
    Ellis, B.R., Fitts, J.P., Bromhal, G.S., McIntyre, D.L., Tappero, R., Peters, C.A.: Dissolution-driven permeability reduction of a fractured carbonate caprock. Environ. Eng. Sci. 30(4), 187–193 (2013)CrossRefGoogle Scholar
  15. 15.
    Oldenburg, C.M., Pruess, K., Benson, S.M.: Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy Fuels 15(2), 293–298 (2001)CrossRefGoogle Scholar
  16. 16.
    Pruess, K.: Numerical simulation of CO2 leakage from a geologic disposal reservoir, including transitions from super-to subcritical conditions, and boiling of liquid CO2. SPE J. 9(02), 237–248 (2004)CrossRefGoogle Scholar
  17. 17.
    Xu, T., Apps, J.A., Pruess, K.: Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Appl. Geochem. 19(6), 917–936 (2004)CrossRefGoogle Scholar
  18. 18.
    Bielinski, A.: Numerical simulation of CO2 sequestration in geological formations. Ph.D. Dissertation, Universität Stuttgart, Germany (2007). Available at: http://elib.uni-stuttgart.de/opus/volltexte/2007/2953/ Google Scholar
  19. 19.
    Bryant, S.L., Lakshminarasimhan, S., Pope, G.A.: Buoyancy-dominated multiphase flow and its effect on geological sequestration of CO2. SPE J. 13(04), 447–454 (2008)CrossRefGoogle Scholar
  20. 20.
    Pruess, K., Nordbotten, J.: Numerical simulation studies of the long-term evolution of a CO2 plume in a saline aquifer with a sloping caprock. Transp. Porous Media 90(1), 135–151 (2011)CrossRefGoogle Scholar
  21. 21.
    Heath, J.E., McKenna, S.A., Dewers, T.A., Roach, J.D., Kobos, P.H.: Multiwell CO2 injectivity: impact of boundary conditions and brine extraction on geologic CO2 storage efficiency and pressure buildup. Environ. Sci. Technol. 48(2), 1067–1074 (2014)CrossRefGoogle Scholar
  22. 22.
    Pruess, K., Garcia, J.: Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ. Geol. 42(2–3), 282–295 (2002)CrossRefGoogle Scholar
  23. 23.
    Pruess, K.: Numerical studies of fluid leakage from a geologic disposal reservoir for CO2 show self-limiting feedback between fluid flow and heat transfer. Geophys. Res. Lett. 32, L14404 (2005).  https://doi.org/10.1029/2005GL023250 CrossRefGoogle Scholar
  24. 24.
    Zheng, L., Spycher, N., Birkholzer, J., Xu, T., Apps, J., Kharaka, Y.: On modeling the potential impacts of CO2 sequestration on shallow groundwater: transport of organics and co-injected H2S by supercritical CO2 to shallow aquifers. Int. J. Greenh. Control 14, 113–127 (2013)CrossRefGoogle Scholar
  25. 25.
    Siriwardane, H.J., Gondle, R.K., Bromhal, G.S.: Coupled flow and deformation modeling of carbon dioxide migration in the presence of a caprock fracture during injection. Energy Fuels 27(8), 4232–4243 (2013)CrossRefGoogle Scholar
  26. 26.
    Tao, Q., Bryant, S.L., Meckel, T.A.: Modeling above-zone measurements of pressure and temperature for monitoring CCS sites. Int. J. Greenh. Control 18, 523–530 (2013)CrossRefGoogle Scholar
  27. 27.
    Zeidouni, M.: Analytical model of well leakage pressure perturbations in a closed aquifer system. Adv. Water Resour. 69, 13–22 (2014)CrossRefGoogle Scholar
  28. 28.
    Rutqvist, J., Wu, Y.S., Tsang, C.F., Bodvarsson, G.: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int. J. Rock Mech. Mining Sci. 39(4), 429–442 (2002)CrossRefGoogle Scholar
  29. 29.
    Birkholzer, J.T., Zhou, Q., Tsang, C.F.: Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int. J. Greenh. Control 3(2), 181–194 (2009)CrossRefGoogle Scholar
  30. 30.
    Iding, M., Ringrose, P.: Evaluating the impact of fractures on the long-term performance of the In Salah CO2 storage site. Energy Procedia 1(1), 2021–2028 (2009)CrossRefGoogle Scholar
  31. 31.
    Gherardi, F., Xu, T., Pruess, K.: Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir. Chem. Geol. 244(1), 103–129 (2007)CrossRefGoogle Scholar
  32. 32.
    Rinaldi, A.P., Rutqvist, J.: Modeling of deep fracture zone opening and transient ground surface uplift at KB-502 CO2 injection well, In Salah, Algeria. Int. J. Greenh. Control 12, 155–167 (2013)CrossRefGoogle Scholar
  33. 33.
    Zhao, X., Ma, R., Zhang, F., Zhong, Z., Wang, B., Wang, Y., Li, Y., Weng, L.: The latest monitoring progress for Shenhua CO2 storage project in China. Int. J. Greenh. Gas Control 60, 199–206 (2017)CrossRefGoogle Scholar
  34. 34.
    Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S., Zweigel, P.: Best practice for the storage of CO2 in saline aquifers-observations and guidelines from the SACS and CO2STORE projects, vol. 14. British Geological Survey, British (2008)Google Scholar
  35. 35.
    Harris, K., White, D., Melanson, D., Samson, C., Daley, T.M.: Feasibility of time-lapse VSP monitoring at the Aquistore CO2 storage site using a distributed acoustic sensing system. Int. J. Greenh. Gas Control 50, 248–260 (2016)CrossRefGoogle Scholar
  36. 36.
    Mathieson, A., Midgely, J., Wright, I., Saoula, N., Ringrose, P.: In Salah CO2 storage JIP: CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Energy Procedia 4, 3596–3603 (2011)CrossRefGoogle Scholar
  37. 37.
    Hovorka, S.D., Benson, S.M., Doughty, C., Freifeld, B.M., Sakurai, S., Daley, T.M., Kharaka, Y.K., Holtz, M.H., Trautz, R.C., Nance, H.S., Myer, L.R.: Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environ. Geosci. 13(2), 105–121 (2006)CrossRefGoogle Scholar
  38. 38.
    Martens, S., Kempka, T., Liebscher, A., Lüth, S., Möller, F., Myrttinen, A., Norden, B., Schmidt-Hattenberger, C., Zimmer, M., Kühn, M.: Europe’s longest-operating on-shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection. Environ. Earth Sci. 67(2), 323–334 (2012)CrossRefGoogle Scholar
  39. 39.
    Wang, Z., Small, M.J.: Statistical performance of CO2 leakage detection using seismic travel time measurements. Greenh. Gases: Sci. Technol. 6(1), 55–69 (2016)CrossRefGoogle Scholar
  40. 40.
    Zhang, Y., Park, H., Nishizawa, O., Kiyama, T., Xue, Z.: Fluid distribution effects on P-wave velocity of CO2/brine saturated rocks: a comparison study and implications for CO2 storage monitoring using seismic method. Energy Procedia 114, 3786–3792 (2017)CrossRefGoogle Scholar
  41. 41.
    Daley, T.M., Solbau, R.D., Ajo-Franklin, J.B., Benson, S.M.: Continuous active-source seismic monitoring of CO2 injection in a brine aquifer. Geophysics 72(5), A57–A61 (2007)CrossRefGoogle Scholar
  42. 42.
    Office of Fossil Energy: DOE-Funded project testing laser CO2 monitoring at carbon storage site. Available at: https://energy.gov/fe/articles/doe-funded-project-testing-laser-co2-monitoring-carbon-storage-site (2015)
  43. 43.
    Flude, S., Johnson, G., Gilfillan, S.M., Haszeldine, R.S.: Inherent tracers for carbon capture and storage in sedimentary formations: composition and applications. Environ. Sci. Technol. 50(15), 7939–7955 (2016)CrossRefGoogle Scholar
  44. 44.
    Yang, Y.M., Dilmore, R., Mansoor, K., Carroll, S., Bromhal G., Small, M.: Risk-based monitoring network design for geologic carbon storage sites. Energy Procedia (in press) (2017)Google Scholar
  45. 45.
    Cacas, M.C., Ledoux, E., Marsily, G.D., Tillie, B., Barbreau, A., Durand, E., Feuga, B., Peaudecerf, P.: Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model. Water Resour. Res. 26(3), 479–489 (1990)Google Scholar
  46. 46.
    McVey, D.S., Mohaghegh, S.: Identification of parameters influencing the response of gas storage wells to hydraulic fracturing with the aid of a neural network. SPE Comput. Appl. 8(02), 54–57 (1996)Google Scholar
  47. 47.
    Liu, H.H., Doughty, C., Bodvarsson, G.S.: An active fracture model for unsaturated flow and transport in fractured rocks. Water Resour. Res. 34(10), 2633–2646 (1998)CrossRefGoogle Scholar
  48. 48.
    Goktas, B., Ertekin, T.: A comparative analysis of the production characteristics of cavity completions and hydraulic fractures in coalbed methane reservoirs. In: SPE Rocky Mountain Regional Meeting, pp. 205–214 (1999)Google Scholar
  49. 49.
    Kim, J.G., Deo, M.D.: Finite element, discrete-fracture model for multiphase flow in porous media. AIChE J. 46(6), 1120–1130 (2000)CrossRefGoogle Scholar
  50. 50.
    Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. Trans. AIME 228, 245–255 (1963)CrossRefGoogle Scholar
  51. 51.
    Griffith, C.A.: Physical characteristics of caprock formations used for geological storage of CO2 and the impact of uncertainty in fracture properties in CO2 transport through fractured caprocks. Ph.D. dissertation, Carnegie Mellon University, Pittsburgh (2012)Google Scholar
  52. 52.
    McKoy, M.L.: Two-dimensional stochastic fracture-porosity models for strata-bound fracture networks and application to the recovery efficiency test (RET #1) well in Wayne County, West Virginia. U.S. DOE Report No. 4CCH-R94-001. U.S. DOE, Morgantown Energy Technology Center, Morgantown (1994)Google Scholar
  53. 53.
    Bower, K.M., Zyvoloski, G.: A numerical model for thermohydro-mechanical coupling in fractured rock. Int. J. Rock Mech. Min. Sci. 34(8), 1201–1211 (1997)CrossRefGoogle Scholar
  54. 54.
    Yin, Q., Jing, H., Su, H., Wang, H.: CO2 permeability analysis of caprock containing a single fracture subject to coupled thermal-hydromechanical effects. Mathematical Problems in Engineering (2017)Google Scholar
  55. 55.
    Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E.: Validity of Cubic Law for fluid flow in a deformable rock fracture. Water Resour. Res. 16(6), 1016–1024 (1980)CrossRefGoogle Scholar
  56. 56.
    Craft, B.C., Hawkins, M.F., Terry, R.E.: Applied petroleum reservoir engineering, p 431. Prentice Hall, Englewood Cliffs (1991)Google Scholar
  57. 57.
    Bromhal, G., ArcentalesBastidas, D., Birkholzer, J., Cihan, A., Dempsey, D., Fathi, E., King, S., Pawar, R., Richard, T., Wainwright, H., Zhang, Y., Guthrie, G.: Use of science-based prediction to characterize reservoir behavior as a function of injection characteristics, geological variables, and time. NRAP-TRS-I-005-2014; NRAP Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory: Morgantown (2014)Google Scholar
  58. 58.
    Zhang, L., Dilmore, R., Bromhal, G.: Effect of outer boundary condition, reservoir size, and CO2 effective permeability on pressure and CO2 saturation predictions under carbon sequestration conditions. Greenh. Gases: Sci. Technol. 6, 546–560 (2016)CrossRefGoogle Scholar
  59. 59.
    Li, Z., Dong, M., Li, S., Huang, S.: CO2 sequestration in depleted oil and gas reservoirs—caprock characterization and storage capacity. Energy Convers. Manag. 47(11), 1372–1382 (2006)CrossRefGoogle Scholar
  60. 60.
    Vilarrasa, V., Carrera, J., Bolster, D., Dentz, M.: Semianalytical solution for CO2 plume shape and pressure evolution during CO2 injection in deep saline formations. Transp. Porous Media 97(1), 43–65 (2013)CrossRefGoogle Scholar
  61. 61.
    Caspari, E., Müller, T.M., Gurevich, B.: Time-lapse sonic logs reveal patchy CO2 saturation in-situ. Geophys. Res. Lett. 38, L13301 (2011).  https://doi.org/10.1029/2011GL046959 CrossRefGoogle Scholar
  62. 62.
    Yang, C., Romanak, K., Hovorka, S., Triveno, R.: Modeling CO2 release experiment in the shallow subsurface and sensitivity analysis. Environ. Eng. Geosci. 19(3), 207–220 (2013)CrossRefGoogle Scholar
  63. 63.
    Kim, S., Hosseini, S.A.: Above-zone pressure monitoring and geomechanical analyses for a field-scale CO2 injection project in Cranfield, MS. Greenh. Gases: Sci. Technol. 4(1), 81–98 (2014)CrossRefGoogle Scholar
  64. 64.
    Rutqvist, J.: The geomechanics of CO2 storage in deep sedimentary formations. Geotech. Geol. Eng. 30(3), 525–551 (2012)CrossRefGoogle Scholar
  65. 65.
    Varre, S.B., Siriwardane, H.J., Gondle, R.K., Bromhal, G.S., Chandrasekar, V., Sams, N.: Influence of geochemical processes on the geomechanical response of the overburden due to CO2 storage in saline aquifers. Int. J. Greenh. Gas Control 42, 138–156 (2015)CrossRefGoogle Scholar
  66. 66.
    van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J. 44(5), 892–898 (1980)CrossRefGoogle Scholar
  67. 67.
    Wang, Z., Small, M.J.: A Bayesian approach to CO2 leakage detection at saline sequestration sites using pressure measurements. Int. J. Greenh. Gas Control 30, 188–196 (2014)CrossRefGoogle Scholar
  68. 68.
    Birkholzer, J., Cihan, A., Zhou, Q.: Impact-driven pressure management via targeted brine extraction—conceptual studies of CO2 storage in saline formations. Int. J. Greenh. Gas Control 7, 168–180 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Geo-mechanics and Geo-technical Engineering, Institute of Rock and Soil MechanicsChinese Academy of SciencesHubei ProvinceChina
  2. 2.National Energy Technology Laboratory, US Department of EnergyPittsburghUSA
  3. 3.Intera Swiss BranchWettingenSwitzerland
  4. 4.National Energy Technology Laboratory, US Department of EnergyMorgantownUSA

Personalised recommendations