Recent approaches to the synthesis of 2H-azirines

  • Nagarajan Ramkumar
  • Leonid G. Voskressensky
  • Upendra K. Sharma
  • Erik V. Van der EyckenEmail author

The most recent (2013–2018) synthetic approaches toward 2H-azirine derivatives are summarized and discussed. This minireview covers the latest examples on the synthesis of 2H-azirines that can be gathered in five distinct categories: the Neber approach, decomposition of vinyl azides, ring contraction of isoxazoles, oxidative cyclization of enamine derivatives, and radical addition/cyclization of alkynes.


aza-heterocycles 2H-azirines small-ring heterocycles 


N. R. is thankful to SERB, India, for granting a postdoctoral fellowship. Financial support by “RUDN University Program 5-100” is gratefully acknowledged.


  1. 1.
    (a) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247. (b) Fisher, J. F.; Meroueh, S. O.; Mobashery, S. Chem. Rev. 2005, 105, 395. (c) Aziridines and Epoxides in Organic Synthesis; Yudin, A. K., Ed.; Wiley-VCH: Weinheim, 2006. (d) Thibodeaux, C. J.; Chang, W.-C.; Liu, H.-W. Chem. Rev. 2012, 112, 1681.Google Scholar
  2. 2.
    (a) Palacios, F.; Ochoa de Retana, A. M.; Martínez de Marigorta, E.; de los Santos, J. M. Eur. J. Org. Chem. 2001, 13, 2401. (b) Palacios, F.; Ochoa de Retana, A. M.; Martínez de Marigorta, E.; de los Santos, J. M. Org. Prep. Proced. Int. 2002, 34, 219. (c) Padwa, A. Adv. Heterocycl. Chem. 2010, 99, 1. (d) Khlebnikov, A. F.; Novikov, M. S. Tetrahedron 2013, 69, 3363.Google Scholar
  3. 3.
    For selected examples, see: (a) Thangaraj, M.; Bhojgude, S. S.; Jain, S.; Gonnade, R. G.; Biju, A. T. J. Org. Chem. 2016, 81, 8604. (b) Zhao, M.-N.; Ren, Z.-H.; Yang, D.-S.; Guan, Z.-H. Org. Lett. 2018, 20, 1287. (c) Jiang, Y.; Park, C.-M.; Loh, T.-P. Org. Lett. 2014, 16, 3432. (d) Zeng, T.-T.; Xuan, J.; Ding, W.; Wang, K.; Lu, L.-Q.; Xiao, W.-J. Org. Lett. 2015, 17, 4070. (e) Wang, H.; Ren, Y.; Wang, K.; Man, Y.; Xiang, Y.; Li, N.; Tang, B. Chem. Commun. 2017, 53, 9644. (f) Li, T.; Xu, F.; Li, X.; Wang, C.; Wan, B. Angew. Chem., Int. Ed. 2016, 55, 2861.Google Scholar
  4. 4.
    (a) Miller, T. W.; Tristram, E. W.; Wolf, F. J. J. Antibiot. 1971, 24, 48. (b) Salomon, C. E.; Williams, D. H.; Faulkner, D. J. J. Nat. Prod. 1995, 58, 1463. (c) Skepper, C. K.; Molinski, T. F. J. Org. Chem. 2008, 73, 2592. (d) Padwa, A.; Woolhouse, A. D. In Comprehensive Heterocyclic Chemistry; Katrizky, A. R.; Rees, C. W., Eds.; Pergamon Press: Oxford, 1984, Vol. 7, p. 47. (e) Fowler, F. W. Adv. Heterocycl. Chem. 1971, 13, 45. (f) Davis, F. D.; Reddy, G. V.; Liu, H. J. Am. Chem. Soc. 1995, 117, 3651.Google Scholar
  5. 5.
    (a) Alves, M. J.; Teixeira e Costa, F. In Heterocyclic Targets in Advanced Organic Synthesis; Carreiras, M. d. C.; Marco- Contelles, J., Eds.; Research Signpost: Trivandrum, 2011, p. 145. (b) Zhu, Y.; Wang, Q.; Cornwall, R. G.; Shi, Y. Chem. Rev. 2014, 114, 8199. (c) Palacios, F.; Ochoa de Retana, A. M.; Martínez de Marigorta, E.; de los Santos, J. M. In Recent Developments in Heterocyclic Chemistry; Pinho e Melo, T. M. V. D.; Rocha- Gonsalves, A. M. d'A., Eds.; Research Signpost: Trivandrum, 2007, p. 27. (d) Pinho e Melo, T. M. V. D.; Rocha- Gonsalves, A. M. d'A. Curr. Org. Synth. 2004, 1, 275. (e) Lemos, A. Molecules 2009, 14, 4098. (f) Padwa, A. In Comprehensive Heterocyclic Chemistry III; Padwa, A., Ed.; Elsevier: Oxford, 2008, Vol. 1, p. 1.Google Scholar
  6. 6.
    Cardoso, A. L.; Gimeno, L.; Lemos, A.; Palacios, F.; Pinho e Melo, T. M. V. D. J. Org. Chem. 2013, 78, 6983.Google Scholar
  7. 7.
    Baumann, M.; Baxendale, I. R. Synlett 2016, 159.Google Scholar
  8. 8.
    Yue, D.-F.; Zhao, J.-Q.; Wang, Z.-H.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C. Org. Biomol. Chem. 2016, 14, 1946.Google Scholar
  9. 9.
    Zhao, J.-Q.; Yue, D.-F.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C. Org. Biomol. Chem. 2016, 14, 10946.Google Scholar
  10. 10.
    Ning, Y.; Otani, Y.; Ohwada, T. J. Org. Chem. 2018, 83, 203.CrossRefGoogle Scholar
  11. 11.
    Huang, Y.-J.; Qiao, B.; Zhang, F.-G.; Ma, J.-A. Tetrahedron 2018, 74, 3791.CrossRefGoogle Scholar
  12. 12.
    Zhao, M.-N.; Zhang, W.; Wang, X.-C.; Zhang, Y.; Yang, D.-S.; Guan, Z.-H. Org. Biomol. Chem. 2018, 16, 4333.CrossRefGoogle Scholar
  13. 13.
    Shah, S. R.; Navathe, S. S.; Dikundwar, A. G.; Row, T. N. G.; Vasella, A. T. Eur. J. Org. Chem. 2013, 264.Google Scholar
  14. 14.
    Cantillo, D.; Gutmann, B.; Kappe, C. O. Org. Biomol. Chem. 2016, 14, 853.CrossRefGoogle Scholar
  15. 15.
    Weigand, K.; Singh, N.; Hagedorn, M.; Banert, K. Org. Chem. Front. 2017, 4, 191.CrossRefGoogle Scholar
  16. 16.
    Huang, B.; Liffert, R.; Linden, A.; Gademann, K. Chem.–Eur. J. 2018, 24, 981.Google Scholar
  17. 17.
    Cardoso, A. L.; Sousa, C.; Henriques, M. S. C.; Paixão, J. A.; Pinho e Melo, T. M. V. D. Molecules 2015, 20, 22351.Google Scholar
  18. 18.
    Zhao, Y.; Zhou, Y.; Zhang, C.; Li, D.; Sun, P.; Li, J.; Wang, H.; Liu, J.; Qu, J. J. Org. Chem. 2018, 83, 2858.CrossRefGoogle Scholar
  19. 19.
    Okamoto, K.; Shimbayashi, T.; Yoshida, M.; Nanya, A.; Ohe, K. Angew. Chem., Int. Ed. 2016, 55, 7199.Google Scholar
  20. 20.
    Rieckhoff, S.; Titze, M.; Frey, W.; Peters, R. Org. Lett. 2017, 19, 4436.CrossRefGoogle Scholar
  21. 21.
    Okamoto, K.; Nanya, A.; Eguchi, A.; Ohe, K. Angew. Chem. 2018, 130, 1051.CrossRefGoogle Scholar
  22. 22.
    Mikhailov, K. I.; Galenko, E. E.; Galenko, A. V.; Novikov, M. S.; Ivanov, A. Y.; Starova, G. L.; Khlebnikov, A. F. J. Org. Chem. 2018, 83, 3177.CrossRefGoogle Scholar
  23. 23.
    Sakharov, P. A.; Novikov, M. S.; Khlebnikov, A. F. J. Org. Chem. 2018, 83, 8304.CrossRefGoogle Scholar
  24. 24.
    Agafonova, A. V.; Smetanin, I. A.; Rostovskii, N. V.; Khlebnikov, A. F.; Novikov, M. S. Chem. Heterocycl. Compd. 2017, 53, 1068. [Khim. Geterotsikl. Soedin. 2017, 53, 1068.]Google Scholar
  25. 25.
    Rostovskii, N. V.; Agafonova, A. V.; Smetanin, I. A.; Novikov, M. S.; Khlebnikov, A. F.; Ruvinskaya, J. O.; Starova, G. L. Synthesis 2017, 4478.Google Scholar
  26. 26.
    Ge, Y.; Sun, W.; Pei, B.; Ding, J.; Jiang, Y.; Loh, T.-P. Org. Lett. 2018, 20, 2774.CrossRefGoogle Scholar
  27. 27.
    Sun, X.; Lyu, Y.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Org. Lett. 2013, 15, 6222.CrossRefGoogle Scholar
  28. 28.
    Duan, X.; Kong, X.; Zhao, X.; Yang, K.; Zhou, H.; Zhou, D.; Zhang, Y.; Liu, J.; Ma, J.; Liu, N.; Wang, Z. Tetrahedron Lett. 2016, 57, 1446.CrossRefGoogle Scholar
  29. 29.
    Li, C.; Yuan, J.; Zhang, Q.; Rao, C. B.; Zhang, R.; Zhao, Y.; Deng, B.; Dong, D. J. Org. Chem. 2018, 83, 14999.CrossRefGoogle Scholar
  30. 30.
    Wang, M.; Hou, J.; Yu, W.; Chang, J. J. Org. Chem. 2018, 83, 14954.CrossRefGoogle Scholar
  31. 31.
    Zhang, Y.; Zhao, X.; Zhuang, C.; Wang, S.; Zhang-Negrerie, D.; Du, Y. Adv. Synth. Catal. 2018, 360, 2107.CrossRefGoogle Scholar
  32. 32.
    Sun, J.; Zhen, X.; Ge, H.; Zhang, G.; An, X.; Du, Y. Beilstein J. Org. Chem. 2018, 14, 1452.Google Scholar
  33. 33.
    Wang, F.; Zhu, N.; Chen, P.; Ye, J.; Liu, G. Angew. Chem., Int. Ed. 2015, 54, 9356.Google Scholar
  34. 34.
    He, Y.-T.; Wang, Q.; Zhao, J.; Liu, X.-Y.; Xu, P.-F.; Liang, Y.-M. Chem. Commun. 2015, 51, 13209.CrossRefGoogle Scholar
  35. 35.
    He, Y.-T.; Wang, Q.; Zhao, J.; Wang, X.-Z.; Qiu, Y.-F.; Yang, Y.-C.; Hu, J.-Y.; Liu, X.-Y.; Liang, Y.-M. Adv. Synth. Catal. 2015, 357, 3069.CrossRefGoogle Scholar
  36. 36.
    Meng, Q.; Chen, F.; Yu, W.; Han, B. Org. Lett. 2017, 19, 5186.CrossRefGoogle Scholar
  37. 37.
    Xiong, H.; Ramkumar, N.; Chiou, M.-F.; Jian, W.; Li, Y.; Su, J.-H.; Zhang, X.; Bao, H. Nat. Commun. 2019, 10, 122.CrossRefGoogle Scholar
  38. 38.
    He, X.; Yue, X.; Zhang, L.; Wu, S.; Hu, M.; Li, J.-H. Chem. Commun. 2019, 55, 3517.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nagarajan Ramkumar
    • 1
  • Leonid G. Voskressensky
    • 2
  • Upendra K. Sharma
    • 1
  • Erik V. Van der Eycken
    • 1
    • 2
    Email author
  1. 1.Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryUniversity of Leuven (KU Leuven)LeuvenBelgium
  2. 2.RUDN UniversityMoscowRussia

Personalised recommendations