Chemistry of Heterocyclic Compounds

, Volume 55, Issue 8, pp 755–761 | Cite as

Theoretical conformational studies of podands containing (2S,4R)-4-hydroxyproline moieties

  • Olga S. Borodina
  • Gennady I. Makarov
  • Ekaterina V. BartashevichEmail author
  • Irina G. Ovchinnikova
  • Yulia A. Titova
  • Olga V. Fedorova
  • Gennady L. Rusinov
  • Valery N. Charushin

Podands derived from (2S,4R)-4-hydroxyproline and containing two oxygen atoms in the oxyethylene moiety were selected for computational studies of their conformational behavior in solutions and further theoretical studies of their role as chiral inductors of Biginelli reaction. Qualitative differences were identified between the conformations of the basic podand and its bis(trifluoroacetate) derivative. Molecular dynamics simulations and quantum-chemical calculations showed that the bicationic form of podand, in contrast to the corresponding basic one, featured an intramolecular hydrogen bond between the 4-hydroxyproline moieties of terminal groups, which led to a noticeable increase in the averaged rotational energy barriers and a greater energy difference between the predominant conformer structures. The subsequent theoretical evaluation of chemical shifts for the various conformers and comparison of the observed values with experimentally obtained 1Н NMR data allowed to confirm the differences between the conformational behavior of (2S,4R)-4-hydroxyproline podand and its bicationic salt in stereoselective Biginelli reactions.


(2S,4R)-4-hydroxyproline podand chemical shift chiral inductor conformational analysis GIAO method 1Н NMR spectroscopy 


This work was performed with financial support provided by State assignment No. 075005781900 of the Ministry of Education and Science of the Russian Federation, with partial support from the Russian Foundation for Basic Research (project 16-29-10757-ofi_m), as well as with support from the Ministry of Science and Higher Education of the Russian Federation (project 4.1157.2017/4.6, action 211, contract 02.A03.21.0011).


  1. 1.
    Weber, E.; Toner, J. L.; Goldberg, I.; Vögtle, F.; Laidler, D. A.; Stoddart, J. F.; Bartsch, R. A.; Liotta, C. L. Crown Ethers and Analogs; John Wiley & Sons: Chichester, 1989.Google Scholar
  2. 2.
    (a) Ovchinnikova, I. G.; Fedorova, O. V.; Slepukhin, P. A.; Litvinov, I. A.; Rusinov, G. L. Crystallogr. Rep. 2009, 54, 31. [Kristallografiya 2009, 54, 37.] (b) Koryakova, O. V.; Isenov, M. L.; Filatova, E. S.; Fedorova, O. V. J. Struct. Chem. 2017, 58, 38. [Zh. Struktur. Khim. 2017, 58, 43.] (c) Radionova, Е. S.; Titova, Yu. А.; Isenov, М. L.; Fedorova, О. V.; Rusinov, G. L.; Charushin, V. N. Chem. Heterocycl. Compd. 2014, 50, 998. [Khim. Geterotsikl. Soedin. 2014, 1083.] (d) Ovchinnikova, I. G.; Fedorova, O. V.; Matochkina, E. G.; Kodess, M. I.; Tumashov, A. A.; Slepukhin, P. A.; Rusinov, G. L.; Charushin, V. N. Macroheterocycles 2010, 3, 108. (e) Fedorova, O. V.; Ovchinnikova, I. G.; Kravchenko, M. A.; Skornyakov, S. N.; Rusinov, G. L.; Chupakhin, O. N.; Charushin, V. N. Chem. Heterocycl. Compd. 2014, 50, 946. [Khim. Geterotsikl. Soedin. 2014, 1027.]Google Scholar
  3. 3.
    (a) Fedorova, O. V.; Titova, Y. A.; Ovchinnikova, I. G.; Rusinov, G. L.; Charushin, V. N. Mendeleev Commun. 2018, 28, 357. (b) Titova, Y. A.; Ovchinnikova, I. G.; Fedorova, O. V.; Rusinov, G. L.; Charushin, V. N. Proceedings 2018, 2, 12.Google Scholar
  4. 4.
    Xin, J.; Chang, L.; Hou, Z.; Shang, D.; Liu, X.; Feng, X. Chem.–Eur. J. 2008, 14, 3177.CrossRefGoogle Scholar
  5. 5.
    (a) Casanovas, J.; Namba, A. M.; León, S.; Aquino, G. L. B.; da Silva, G. V. J.; Alemán, C. J. Org. Chem. 2001, 66, 3775. (b) Sebag, A. B.; Forsyth, D. A.; Plante, M. A. J. Org. Chem. 2001, 66, 7967.Google Scholar
  6. 6.
    Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. Comput. Phys. Commun. 2014, 185, 604.CrossRefGoogle Scholar
  7. 7.
    Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. 1996, 104, 5497.CrossRefGoogle Scholar
  8. 8.
    Bifulco, G.; Dambruoso, P.; Gomez-Paloma, L.; Riccio, R. Chem. Rev. 2007, 107, 3744.CrossRefGoogle Scholar
  9. 9.
    (a) Wang, B.; Dossey, A. T.; Walse, S. S.; Edison, A. S.; Merz, K. M. J. Nat. Prod. 2009, 72, 709. (b) Forsyth, D. A.; Sebag, A. B. J. Am. Chem. Soc. 1997, 119, 9483.Google Scholar
  10. 10.
    Balandina, A.; Mamedov, V.; Franck, X.; Figadère, B.; Latypov, Sh. Tetrahedron Lett. 2004, 45, 4003.CrossRefGoogle Scholar
  11. 11.
    Colombo, D.; Ferraboschi, P.; Ronchetti, F.; Toma, L. Magn. Reson. Chem. 2002, 40, 581.CrossRefGoogle Scholar
  12. 12.
    Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157.CrossRefGoogle Scholar
  13. 13.
    Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2013, 3, 198.Google Scholar
  14. 14.
    Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269.CrossRefGoogle Scholar
  15. 15.
    Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. SoftwareX 2015, 1, 19.CrossRefGoogle Scholar
  16. 16.
    Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126, 014101.CrossRefGoogle Scholar
  17. 17.
    Domene, C.; Barbini, P.; Furini, S. J. Chem. Theory Comput. 2015, 11, 1896.CrossRefGoogle Scholar
  18. 18.
    Barducci, A.; Bussi, G.; Parrinello, M. Phys. Rev. Lett. 2008, 100, 020603.CrossRefGoogle Scholar
  19. 19.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision A.03; Gaussian, Inc.: Wallingford, 2016.Google Scholar
  20. 20.
    Mennucci, B.; Tomasi, J.; Cammi, R.; Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Gabriel, S.; Stephens, P. J. J. Phys. Chem. A 2002, 106, 6102.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Olga S. Borodina
    • 1
  • Gennady I. Makarov
    • 1
  • Ekaterina V. Bartashevich
    • 1
    Email author
  • Irina G. Ovchinnikova
    • 2
  • Yulia A. Titova
    • 2
    • 3
  • Olga V. Fedorova
    • 2
  • Gennady L. Rusinov
    • 2
    • 3
  • Valery N. Charushin
    • 2
    • 3
  1. 1.South Ural State UniversityChelyabinskRussia
  2. 2.Postovsky Institute of Organic SynthesisUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  3. 3.Ural Federal University named after the first President of Russia B. N. YeltsinYekaterinburgRussia

Personalised recommendations