Advertisement

Chemistry of Heterocyclic Compounds

, Volume 55, Issue 8, pp 748–754 | Cite as

Cascade recyclization of N-arylitaconimides as a new approach to the synthesis of polyfunctional octahydroquinolines

  • Yurii A. Kovygin
  • Khidmet S. Shikhaliev
  • Mikhail Yu. KrysinEmail author
  • Andrei Yu. Potapov
  • Irina V. Ledenyova
  • Yevgeniya A. Kosheleva
  • Dmitriy Yu. Vandyshev
Article
  • 11 Downloads

A new variant of Hantzsch reaction was developed for the synthesis of 1,2,3,4,5,6,7,8-octahydroquinolines on the basis of regioselective cascade recyclization of N-arylitaconimides in reactions with 3-aminocyclohex-2-enones. The mechanism of this domino process included С-nucleophilic addition of enaminone to the activated multiple bond of itaconimide and intramolecular transamidation with simultaneous recyclization of the intermediate.

Keywords

aminocyclohexenones itaconimides octahydroquinolines cascade reactions Hantzsch reaction 

Notes

This work was performed with financial support from the Russian Science Foundation (contract No. 18-74-10097).

The results of this study were obtained in part by using the scientific equipment at the Collective Use Center of Voronezh State University.

Supplementary material

10593_2019_2530_MOESM1_ESM.pdf (26.1 mb)
ESM 1 (PDF 26777 kb)

References

  1. 1.
    (a) Sato, T.; Yoritate, M.; Tajima, H; Chida, N. A. Org. Biomol. Chem. 2018, 16, 3864. (b) Shang, X. F.; Moris-Natschke, S. L.; Liu, Y.-Q.; Guo, X.; Xu, X.-S.; Goto, M.; Li, J.-C.; Yu, Y.; Yang, G.-Z.; Lee, K.-H. Med. Res. Rev. 2018, 38, 775. (c) Piccichè, M.; Pinto, A.; Griera, R.; Bosch, J.; Amat, M. Org. Lett. 2017, 19, 6654. (d) Bosch, C.; Fiser, B.; Gómez-Bengoa, E.; Bradshaw, B.; Bonjoch, J. Org. Lett. 2015, 17, 5084. (e) Dickson, E.; Pilkington, L. I.; Brimble, M. A.; Barker, D. A. Tetrahedron 2016, 72, 400. (f) Siengalewicz, P.; Mulzer, J.; Rinner, U. In The Alkaloids; Knolker, H.-J., Ed.; Elsevier: San Diego, 2013, Vol. 72, p. 1.Google Scholar
  2. 2.
    (a) Daly, J. W.; Nishizawa, Y.; Padgett, W.; Tokuyama, T.; McCloskey, P. J.; Waykole, L.; Schultz, A. G.; Aronstam, R. S. Neurochem. Res. 1991, 16, 1207. (b) Tsuneki, H.; You, Y.; Toyooka, N.; Sasaoka, T.; Nemoto, H.; Dani, J. A.; Kimura, I. Biol. Pharm. Bull. 2005, 28, 611. (c) Guthmann, H.; Conole, D.; Wright, E.; Körber, K.; Barker, D.; Brimble, M. A. Eur. J. Org. Chem. 2009, 1944.Google Scholar
  3. 3.
    Wright, A. D.; Goclik, E.; Konig, G. M.; Kaminsky, R. J. Med. Chem. 2002, 45, 3067.CrossRefGoogle Scholar
  4. 4.
    Kubanek, J.; Williams, D. E.; De Silva, E. D.; Allen, T.; Andersen, R. J. Tetrahedron Lett. 1995, 36, 6189.CrossRefGoogle Scholar
  5. 5.
    (a) Maiti, S.; Mendez, J. C. Chem. Commun. 2011, 47, 10554. (b) Akashi, M.; Sato Y.; Mori, M. J. Org. Chem. 2001, 66, 7873.Google Scholar
  6. 6.
    Procopiou, G.; Aggarwal P.; Newton, A. F.; Richards, D.; Mellor, J. R.; Harbottle, G.; Stockman, R. A. Chem. Commun. 2014, 50, 15355.CrossRefGoogle Scholar
  7. 7.
    (a) Pelss, A.; Koskinen, A. M. P. Chem. Heterocycl. Compd. 2013, 49, 226. [Khim. Geterotsikl. Soedin. 2013, 249.] (b) Pu, X.; Ma, D. J. Org. Chem. 2006, 71, 6562.Google Scholar
  8. 8.
    (a) Nainwal, L. M.; Tasneem, S.; Akhtar, W.; Verma, G.; Khan, M. F.; Parvez, S.; Shaquiquzzaman, M.; Akhter, M.; Alam, M. M. Eur. J. Med. Chem. 2019, 121. (b) Nikoofar, K.; Yielzoleh, F. M. J. Saud. Chem. Soc. 2018, 715. (c) El Ashrya, El S. H.; Awada L. F.; El Kilanyc, Y.; Ibrahim, E. Adv. Hetеrocycl. Chem. 2009, 98, 1.Google Scholar
  9. 9.
    (a) Vill, J. J.; Steadman, T. R.; Godfrey, J. J. J. Org. Chem. 1964, 29, 2780. (b) Hickmott, P. W.; Rae, B. S. Afr. J. Chem. 1988, 41, 85. (c) Chelucci, G.; Cossu, S.; Scano, G.; Soccolini, F. Heterocycles 1990, 31, 1397.Google Scholar
  10. 10.
    (a) Mahajan, J. R.; Ferreira, G. A. L.; Araujo, H. C.; Nunes, B. Synthesis 1976, 112. (b) Campbell, A. D.; Stevens D. R. J. Chem. Soc. 1956, 959. (c) Reinshagen, H. Angew. Chem., Int. Ed. 1964, 3, 807. (d) Greenhill, J. V.; Mohamed, M. I. J. Chem. Soc., Perkin Trans. 1 1979, 1411.Google Scholar
  11. 11.
    Rai, A.; Singh, A. K.; Singh, P.; Yadav, L. D. S. Tetrahedron Lett. 2011, 52, 1354.CrossRefGoogle Scholar
  12. 12.
    (a) Enders, D.; Demir, A. S. Tetrahedron Lett. 1987, 28, 3795. (b) Paulvannan, K.; Stille, J. R. Tetrahedron Lett. 1993, 34, 6673. (c) Strozhev, M. F.; Lielbriedis, I. É. Chem. Heterocycl. Compd. 1993, 29, 1048. [Khim. Geterotsikl. Soedin. 1993, 1227.] (d) Yao, C.; Jiao, W.; Xiao, Z.; Liu, R.; Li, T.; Yu, C. Tetrahedron 2013, 69, 1133.Google Scholar
  13. 13.
    (a) Gu, X.; Georg, H. I. Tetrahedron 2013, 69, 9406. (b) Strozhev, M. F.; Lielbriedis, I. É.; Neiland, O. Y. Chem. Heterocycl. Compd. 1990, 26, 655. [Khim. Geterotsikl. Soedin. 1990, 786.] (c) Wang, X.-S.; Zhang, M.-M.; Jiang, H.; Yao, C.-S.; Wang, J.; Tu, S.-J. Tetrahedron 2007, 63, 4439. c Jiang, B.; Liang, Y.-B.; Kong, L.-F.; Tu, X.-J.; Hao, W.-J.; Ye, Q.; Tu, S.-J. RSC Adv. 2014, 4, 54480. d Vereshchagin, A. N.; Elinson, M. N.; Anisina, Y. E.; Karpenko, K. A.; Goloveshkin, A. S.; Zlotin, S. G.; Egorov, M. P. Mol. Diversity 2018, 22, 627. e Zadsirjan, V.; Mandizadeh, S. J.; Heravi, M. M.; Heydari, M. Can. J. Chem. 2018, 96, 1071.Google Scholar
  14. 14.
    (a) Azzam, S. H. S.; Siddekha, A.; Pasha, M. A. Tetrahedron Lett. 2012, 53, 6306. (b) Suárez, M.; Ochoa, E.; Verdecia, Y.; Pita, B.; Morán, L.; Martín, N.; Quinteiro, M.; Seoane, C.; Soto, J.; Novoa, H.; Blaton, N.; Peters, O. M. Tetrahedron 1999, 55, 875. (c) Tu, S.; Zhu, X.; Zhang, J.; Xu, Z.; Zhang, Y.; Wang, Q.; Jia, R.; Jiang, B.; Zhang, J.; Yao, C. Bioorg. Med. Chem. Lett. 2006, 16, 2925. (d) Ziarani, G. M.; Asadi, S.; Badiei, A.; Mousavi, S.; Gholamzadeh, P. Res. Chem. Intermed. 2015, 41, 637. (e) Guoyong, S.; Bo, W.; Xiaoyin, W.; Yuru, K.; Liming, Y. Synth. Commun. 2005, 35, 2875.Google Scholar
  15. 15.
    (a) Shah, K. R.; Blanton, C. D. Jr. J. Org. Chem. 1982, 47, 502. (b) Rudenko, R. V.; Komykhov, S. A.; Desenko, S. M.; Sen'ko, Y. V.; Shishkin, O. V.; Konovalova, I. S.; Shishkina, S. V.; Chebanov, V. A. Synthesis 2011, 3161. (c) Vandyshev, D. Y.; Shikhaliev, K. S.; Potapov, A. Y.; Krysin, M. Yu. Chem. Heterocycl. Compd. 2015, 51, 829. [Khim. Geterotsikl. Soedin. 2015, 51, 829.] (d) Rudenko, R. V.; Komykhov, S. A.; Musatov, V. I.; Konovalova, I. S.; Shishkin, O. V.; Desenko, S. M. J. Heterocycl. Chem. 2011, 48, 888. d Havrylyuk, D.; Zimenkovsky, B.; Lesyk, R. Phosphorus, Sulfur Silicon Relat. Elem. 2009, 184, 638. e Lesyk, R.; Vladzimirska, O.; Holota, S.; Zaprutko, L.; Gzella, A. Eur. J. Med. Chem. 2007, 42, 641. f Hahn, H.-G.; Nam, K. D.; Mah, H. Heterocycles 2001, 55, 1283.Google Scholar
  16. 16.
    Vandyshev, D. Y.; Shikhaliev, K. S.; Kokonova, A. V.; Potapov, A. Y.; Kolpakova, M. G.; Sabynin, A. L.; Zubkov, F. I. Chem. Heterocycl. Compd. 2016, 52, 493. [Khim. Geterotsikl. Soedin. 2016, 52, 493.]CrossRefGoogle Scholar
  17. 17.
    Vandyshev, D. Y.; Shikhaliev, K. S.; Potapov, A. Y.; Krysin, M. Y.; Zubkov, F. I.; Sapronova, L. V. Beilstein J. Org. Chem. 2017, 13, 2561.Google Scholar
  18. 18.
    (a) Stout, D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223. (b) Simon, C.; Constantieux, T.; Rodriguez, J. Eur. J. Org. Chem. 2004, 4957.Google Scholar
  19. 19.
    Huang, Y.; Hartmann, R. W. Synth. Commun. 1998, 28, 1197.CrossRefGoogle Scholar
  20. 20.
    Abdel-Naby, A. S. J. Appl. Polym. Sci. 2011, 121, 169.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yurii A. Kovygin
    • 1
  • Khidmet S. Shikhaliev
    • 1
  • Mikhail Yu. Krysin
    • 1
    Email author
  • Andrei Yu. Potapov
    • 1
  • Irina V. Ledenyova
    • 1
  • Yevgeniya A. Kosheleva
    • 1
  • Dmitriy Yu. Vandyshev
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations