Advertisement

Chemistry of Heterocyclic Compounds

, Volume 55, Issue 4–5, pp 448–454 | Cite as

Estimation of biological affinity of nitrogen-containing conjugated heterocyclic pharmacophores

  • Marina V. Kachaeva
  • Nataliya V. ObernikhinaEmail author
  • Evgenia S. Veligina
  • Maryna Yu. Zhuravlova
  • Yaroslav O. Prostota
  • Oleksiy D. Kachkovsky
  • Volodymyr S. Brovarets
Article
  • 19 Downloads

For the estimation of donor/acceptor character of conjugated heterocyclic compounds, the φ0 index is used. This parameter is determined by the relative positions of the frontier molecular orbital energy levels. It is shown that φ0 value of 0.5 means that the donor and acceptor properties in the conjugated molecule are balanced, while an increase of the index (φ0 > 0.5) corresponds to increasing of the donor strength, and, conversely, its lowered value (φ0 < 0.5) points to increased acceptor strength. In this work, a series of widely known heterocyclic compounds, as well as derivatives of oxazole and nucleobases are analyzed in detail. It is shown that change in φ0 index is connected to the biological activity. As an example, the influence of the conjugated substituents is studied and it is found that the oxazole derivatives with acceptor substituents inhibit cancer cells.

Keywords

nitrogen heterocycles nucleobases anticancer pharmacophores biological π-electron affinity π-conjugated systems 

Notes

Supplementary material

10593_2019_2478_MOESM1_ESM.pdf (8.1 mb)
ESM 1 (PDF 8277 kb)

References

  1. 1.
    Bricks, J. L.; Kachkovskii, A. D.; Slominskii, Y. L.; Gerasov, A. O.; Popov, S. V. Dyes Pigm. 2015, 121, 238.CrossRefGoogle Scholar
  2. 2.
    Kachkovsky, A. D. Russ. Chem. Rev. 1997, 66, 647. [Usp. Khim. 1997, 66, 715.]Google Scholar
  3. 3.
    Hünig, S.; Berneth, H. Top. Curr. Chem. 1980, 1, 92.Google Scholar
  4. 4.
    Saini, M. S.; Kumar, A.; Dwivedi, J.; Singh, R. Int. J. Pharma Sci. Res. 2013, 4, 66.CrossRefGoogle Scholar
  5. 5.
    Sharma, V.; Kumar, P.; Pathak, D. J. Heterocycl. Chem. 2010, 47, 491.Google Scholar
  6. 6.
    Al-Mulla, A. Pharma Chem. 2017, 9, 141.Google Scholar
  7. 7.
    Zaenger, W. Principles of Nucleic Acid Structure; SpringerVerlag: New-York, Berlin, Heidelberg, Tokyo, 1984, p. 584.CrossRefGoogle Scholar
  8. 8.
    Bissantz, C.; Kuhn, B.; Stahl, M. A. J. Med. Chem. 2010, 53, 5061.CrossRefGoogle Scholar
  9. 9.
    Schneider, H. J. Acc. Chem. Res. 2015, 248, 1815.CrossRefGoogle Scholar
  10. 10.
    Cauet, E.; Rooman, M.; Wintjens, R.; Lievin, J.; Biot, C. J. Chem. Theory Comput. 2005, 1, 472.CrossRefGoogle Scholar
  11. 11.
    Desiraju, G. R.; Stainer, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press, Inc.: New York, 1999.Google Scholar
  12. 12.
    Grabowski, S. J. J. Phys.Org. Chem. A 2001, 105, 10739.CrossRefGoogle Scholar
  13. 13.
    Zhang, C.; Bell.; Harger, M.; Ren, P. J. Chem. Theory Comput. 2017, 13, 666.Google Scholar
  14. 14.
    Šponer, J.; Riley, K. E.; Hobza, P. Phys. Chem. Chem. Phys. 2008, 10, 2595.CrossRefGoogle Scholar
  15. 15.
    Marsili, S.; Chelli, R.; Schettino, V.; Procacci, P. Phys. Chem. Chem. Phys. 2008, 10, 2673.CrossRefGoogle Scholar
  16. 16.
    Trinajstić, N. In Semi-empirical Methods of Electron Structure Calculation; Part A: Techniques; Segal, G. A., Ed.; Plenum Press: New York, London, 1977, p. 1.Google Scholar
  17. 17.
    Kachkovsky, A. D.; Dekhtyar, M. L. MATCH 1995, 32, 127.Google Scholar
  18. 18.
    Shablykin, O.; Kobzar, O.; Prostota, Y.; Kachkovsky, O.; Brovarets, V.; Vovk, A.; Merzhyievskyi D.; Obernikhina, N. Electronics and Nanotechnology (ELNANO-2018): Proc. of 38th Int. Sci. Conf. (April 24–26 2018, Kyiv, Ukraine); Kyiv, 2018, p. 449.Google Scholar
  19. 19.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E., Jr.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox D. J. Gaussian 09; Gaussian, Inc.: Wallingford, 2009.Google Scholar
  20. 20.
    Dolzhenko, A. V.; Dolzhenko, A. V.; Chui, W.-K. Heterocycles 2008, 75, 1575.CrossRefGoogle Scholar
  21. 21.
    Burnstock, G.; Verkhratsky, A. Acta Physiol. 2009, 195, 415.CrossRefGoogle Scholar
  22. 22.
    Lim, F. P. L.; Dolzhenko, A. V. Eur. J. Med. Chem. 2014, 85, 371. 23. Nie, Z.; Perretta, C.; Erickson, P.; Margosiak, S.; Lu, J.; Averill, A.; Almassy, R.; Chu, S. Bioorg. Med. Chem. Lett. 2008, 18, 619.Google Scholar
  23. 23.
    Bettayeb, K.; Sallam, H.; Ferandin, Y.; Popowycz, F.; Fournet, G.; Hassan, M.; Echalier, A.; Bernard, P.; Endicott, J.; Joseph, B.; Meijer, L. Mol. Cancer Ther. 2008, 7, 2713.CrossRefGoogle Scholar
  24. 24.
    Popowycz, F.; Fournet, G.; Schneider, C.; Bettayeb, K.; Ferandin, Y.; Lamigeon, C.; Tirado, O. M.; MateoLozano, S.; Notario, V.; Colas, P.; Bernard, P.; Meijer, L.; Joseph, B. J. Med. Chem. 2009, 52, 655.CrossRefGoogle Scholar
  25. 25.
    Maekawa, T.; Sakai, N.; Tawada, H.; Murase, K.; Hazama, M.; Sugiyama, Y.; Momose, Y. Chem. Pharm. Bull. 2003, 51, 565.CrossRefGoogle Scholar
  26. 26.
    Serrano, M. I.; Serrano, J. S.; Fernandez, A.; Sanchezcarrasco, J. M.; Fuentes, J.; Pradera, M. A.; Ortiz, M. C.; Garcia Fernandez, J. M. ChemInform Abstract 1995, 26, 22.  https://doi.org/10.1002/chin.199525129 Google Scholar
  27. 27.
    Pinto, V.; Pinto, C. M.; Pinto, M. C.; Rita, R. C.; Pezzella, C. A.; de Castro, S. L. Arzneimittelforschung 1997, 47, 74.Google Scholar
  28. 28.
    Uckun, F. M. Curr. Pharm. Des. 2001, 16, 1627.Google Scholar
  29. 29.
    Eswaran, S.; Adhikari, A. V.; Kumar, R. A. Eur. J. Med. Chem. 2010, 45, 957.CrossRefGoogle Scholar
  30. 30.
    Kunes, J.; Balsanek, V.; Pour, M.; Buchta, V. Collect. Czech. Chem. Commun. 2001, 66, 1809.CrossRefGoogle Scholar
  31. 31.
    Kaspady, M.; Narayanaswamy, V. K.; Raju, M.; Rao, G. K. Lett. Drug Des. Discovery 2009, 6, 21.CrossRefGoogle Scholar
  32. 32.
    Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Craig, W. D.; Smee, D. F.; Grellier, P.; Lesyk, O. Eur. J. Med. Chem. 2013, 66, 228.Google Scholar
  33. 33.
    Semenyuta, I.; Kovalishyn, V.; Tanchyk, V.; Piyo, S.; Zyabrev, V.; Blagodatnyy, V.; Trokhimenko, O.; Brovarets, V.; Meteytsia, L. Comput. Biol. Chem. 2016, 65, 8.Google Scholar
  34. 34.
    Liu, X.; Bai, L.; Pan, C.; Song, B.; Zhu, H. Chin. J. Chem. 2009, 27, 1957.CrossRefGoogle Scholar
  35. 35.
    Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. J. Natl. Cancer Inst. 1991, 83, 757.CrossRefGoogle Scholar
  36. 36.
    Boyd, M. R.; Paull, K. D. Drug Dev. Res. 1995, 34, 91.CrossRefGoogle Scholar
  37. 37.
    Boyd, M. R. In Anticancer Drug Development Guide. Cancer Drug Discovery and Development; Teicher, B. A., Ed.; Humana Press: Totowa, 1997, p. 23-42. DOI: 10.1007/978-14615-8152-9_2.Google Scholar
  38. 38.
    Shoemaker, R. H. Nat. Rev. Cancer. 2006, 6, 813.CrossRefGoogle Scholar
  39. 39.
    Kachaeva, M. V.; Hodyna, D. M.; Semenyuta, I.; Pilyo, S. G.; Prokopenko, V. M.; Kovalishyn, V. V.; Metelytsia, L. O.; Brovarets, V. S. Comput. Biol. Chem. 2018, 74, 294.CrossRefGoogle Scholar
  40. 40.
    Kachaeva, M. V.; Pilyo, S. G.; Zhirnov, V. V.; Brovarets, V. S. Med. Chem. Res. 2019, 28, 71.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Marina V. Kachaeva
    • 1
  • Nataliya V. Obernikhina
    • 2
    Email author
  • Evgenia S. Veligina
    • 1
  • Maryna Yu. Zhuravlova
    • 3
  • Yaroslav O. Prostota
    • 1
  • Oleksiy D. Kachkovsky
    • 1
  • Volodymyr S. Brovarets
    • 1
  1. 1.Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Department of Chemistry of Bioactive Nitrogen-containing Heterocyclic BasesKyivUkraine
  2. 2.Bogomolets National Medical University, Department of Bioorganic and Biological ChemistryKyivUkraine
  3. 3.National University of “Kyiv-Mohyla Academy”KyivUkraine

Personalised recommendations