Advertisement

Chemistry of Heterocyclic Compounds

, Volume 55, Issue 4–5, pp 408–415 | Cite as

Amides of substituted 3-(pteridin-6-yl)propanoic acids: synthesis, spectral characteristics, and cytotoxic activity

  • Maxim S. Kazunin
  • Oleksii Yu. Voskoboynik
  • Oksana M. Shatalova
  • Ludmila N. Maloshtan
  • Sergiy I. KovalenkoEmail author
Article
  • 12 Downloads

A heterocyclization reaction of 5,6-diamino-1-methyluracil and 2-oxopentanedioic acid was used in this study to synthesize 3-(1-methyl-2,4,7-trioxo-1,2,3,4,7,8-hexahydropteridin-6-yl)propanoic acid, intramolecular cyclization of which led to the formation of a tricyclic lactone, namely, 1-methyl-6,7-dihydro-2H-pyrano[3,2-g]pteridine-2,4,8-(1H,3H)-trione. Reactions of the latter with N-nucleophiles gave a series of amides – structural analogs of antifolates. The structure and identity of the synthesized compounds were confirmed by IR spectroscopy, 1H and 13C NMR spectroscopy, LC-MS analysis, and mass spectrometry. It was established that the synthesized compounds showed cytotoxic effects against human hepatocellular carcinoma (HepG2) cells and may be of interest for further studies of their antitumor activity against other cell lines.

Keywords

amides antifolates 5,6-diamino-1-methyluracil 3-(1-methyl-2,4,7-trioxo-1,2,3,4,7,8-hexahydropteridin-6-yl)propanoic acid N-nucleophiles cytotoxicity heterocyclization structural similarity 

References

  1. 1.
    Qujeq, D.; Ahmadi, H. Am. J. Nephrol. 2001, 21, 340.CrossRefGoogle Scholar
  2. 2.
    Cunnington, C.; Van Assche, T.; Shirodaria, C.; Kylintireas, I.; Lindsay, A. C.; Lee, J. M.; Antoniades, C.; Margaritis, M.; Lee, R.; Cerrato, R.; Crabtree, M. J.; Francis, J. M.; Sayeed, R.; Ratnatunga, C.; Pillai, R.; Choudhury, R. P.; Neubauer, S.; Channon, K. M. Circulation 2012, 125, 1356.CrossRefGoogle Scholar
  3. 3.
    Werner-Felmayer, G.; Golderer, G.; Werner, E. R. Curr. Drug Metab. 2002, 3, 159.CrossRefGoogle Scholar
  4. 4.
    Shalini, A.; Pavitra, K. K. Agro Food Ind. Hi-Tech 2012, 23, 25.Google Scholar
  5. 5.
    Kompis, I. M.; Islam, K.; Then, R. L. Chem. Rev. 2005, 105, 593.CrossRefGoogle Scholar
  6. 6.
    Palanki, M. S. S.; Dneprovskaia, E.; Doukas, J.; Fine, R. M.; Hood, J.; Kang, X.; Lohse, D.; Martin, M.; Noronha, G.; Soll, R. M.; Wrasidlo, W.; Yee, S.; Zhu, H. J. Med. Chem. 2007, 50, 4279.CrossRefGoogle Scholar
  7. 7.
    Kuroda, Y.; Isarai, K.; Murata, S. Heterocycl. Commun. 2012, 18, 117.CrossRefGoogle Scholar
  8. 8.
    Murata, S.; Ichinose, H.; Urano, F. In Bioactive Heterocycles II. Topics in Heterocyclic Chemistry; Eguchi, S., Ed.; Springer: Berlin, Heidelberg, 2007, Vol. 8, p. 127.CrossRefGoogle Scholar
  9. 9.
    Kim, Y.; Kang, Y.; Baek, D. Bull. Korean Chem. Soc. 2001, 22, 141.Google Scholar
  10. 10.
    Guiney, D.; Gibson, C. L.; Suckling, C. J. Org. Biomol. Chem. 2003, 1, 664.CrossRefGoogle Scholar
  11. 11.
    Kazunin, M. S.; Voskoboynik, O. Yu.; Nosulenko, I. S.; Berest, G. G.; Sergeieva, T.; Okovytyy, S.; Karpenko, O. V.; Priimenko, B. O.; Kovalenko, S. I. J. Heterocycl. Chem. 2018, 55, 1033.CrossRefGoogle Scholar
  12. 12.
    Pfleiderer, W. Angew. Chem. 1963, 75, 993.CrossRefGoogle Scholar
  13. 13.
    Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606.CrossRefGoogle Scholar
  14. 14.
    El-Sabbagh, O. I.; El-Sadek, M. E.; El-Kalyoubi, S.; Ismail, I. Arch. Pharm. Chem. Life Sci. 2007, 340, 26.CrossRefGoogle Scholar
  15. 15.
    Jacobsen, N. E. NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology; John Wiley & Sons, Inc., 2007.Google Scholar
  16. 16.
    Mass Spectrometry in Organic Chemistry [in Russian]; Lebedev, А. Т.; Ed.; BINOM. Laboratoriya Znanii: Moscow, 2003.Google Scholar
  17. 17.
    Daele, V. J.; Blancquaert, D.; Kiekens, F.; Van Der Straeten, D.; Lambert, W. E.; Stove, C. P. Food Chem. 2016, 194, 1189.CrossRefGoogle Scholar
  18. 18.
    Mitroshina, E. V.; Mishchenko, Т. А.; Vedunova, M. V. Determination of Cell Culture Viability: a Study Aid [in Russian]; Nizhegorod Lobachevsky State University: Nizhny Novgorod, 2015. http://www.neuro.unn.ru/sites/default/files/opredelenie_zhiznesposobnosti.pdf
  19. 19.
    Mitskevich, P. B.; Kosmacheva, S. M.; Ibragimova, Zh. A.; Shman, T. V.; Mislitskii, V. F. Application of МТТ test for Evaluating the Sensitivity of Leukemia Cells to Cytostatic Drugs in vitro and Predicting the Response of Leukemia to Chemotherapy; User Manual [in Russian]; Ministry of Health of the Republic of Belarus: Minsk. Registration number 11111102, approval date February 13, 2003. http://med.by/methods/pdf/111-1102.pdf
  20. 20.
    Mosmann, T. J. Immunol. Methods 1983, 65, 55.CrossRefGoogle Scholar
  21. 21.
    Cancer Cell Culture: Methods and Protocols (Methods in Molecular Medicine); Langdon, S. P., Eds.; Humana Press: Totowa, 2004, p. 165.Google Scholar
  22. 22.
    Supino, R. In In Vitro Toxicity Testing Protocols (Methods in Molecular Biology); O'Hare, S.; Atterwill, C. K., Eds.; Springer: New York, 1995, Vol. 43, p. 138.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maxim S. Kazunin
    • 1
  • Oleksii Yu. Voskoboynik
    • 1
  • Oksana M. Shatalova
    • 2
  • Ludmila N. Maloshtan
    • 2
  • Sergiy I. Kovalenko
    • 1
    Email author
  1. 1.Zaporizhzhya State Medical UniversityZaporizhzhiaUkraine
  2. 2.National University of Pharmacy, Laboratory of Morphofunctional ResearchKharkivUkraine

Personalised recommendations