Advertisement

Chemistry of Heterocyclic Compounds

, Volume 55, Issue 4–5, pp 333–348 | Cite as

Conjugated 2,4,1- and 1,4,3-enynones as polycentricelectrophiles in synthesis of heterocyclic compounds

  • Alexander A. GolovanovEmail author
  • Dmitry M. Gusev
  • Ivan S. Odin
  • Simon S. Zlotskii
Article
  • 17 Downloads

This review article provides critical analysis of literature data regarding the heterocyclization reactions of compounds containing alk-2-en-4-yn-1-one and alk-1-en-4-yn-3-one moieties. We discuss the reactions leading to the formation of furans, 2,3-dihydropyrans, 1,2,3-triazoles, 4,5-dihydro-1Н-pyrazoles, pyrazoles, isoxazoles, pyrimidines, aziridines, as well as a range of more complex fused ringsystems. The biological activity and photophysical properties of the obtained heterocyclic compounds are described. The attention ismainly focused on the studies published during the last 5 years. A total of 87 references are given.

Keywords

aziridines conjugated enynones furans pyrazoles pyrimidines 1,2,3-triazoles biological activity cyclization 1,3-dipolarcycloaddition nucleophilic addition 

Notes

ACKNOWLEDGEMENT

This work received financial support from the Russian Science Foundation (grant 18-13-00008).

References

  1. 1.
    Golovanov, A. A.; Odin, I. S.; Zlotskii, S. S. Russ. Chem. Rev. 2019, 88, 280. [Usp. Khim. 2019, 88, 280.]Google Scholar
  2. 2.
    Asao, N. Synlett 2006, 1645.Google Scholar
  3. 3.
    Kumari, A. L. S.; Reddy, A. S.; Swamy, K. C. K. Org. Biomol. Chem. 2016, 14, 6651.CrossRefGoogle Scholar
  4. 4.
    Ma, J.; Zhang, L.; Zhu, S. Curr. Org. Chem. 2016, 20, 102.CrossRefGoogle Scholar
  5. 5.
    Bell, I.; Jones, E. R. H.; Whiting, M. C. J. Chem. Soc. 1958, 1313.Google Scholar
  6. 6.
    Pei, C.; Rong, G.-W.; Yu, Z.-X.; Xu, X. J. Org. Chem. 2018, 83, 13243.CrossRefGoogle Scholar
  7. 7.
    Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. J. Org. Chem. 2016, 81, 3275.CrossRefGoogle Scholar
  8. 8.
    Yu, Y.; Yi, S.; Zhu, C.; Hu, W.; Gao, B.; Chen, Y.; Wu, W.; Jiang, H. Org. Lett. 2016, 18, 400.CrossRefGoogle Scholar
  9. 9.
    Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. Org. Lett. 2014, 16, 4082.CrossRefGoogle Scholar
  10. 10.
    Yang, J.-M.; Li, Z.-Q.; Li, M.-L.; He, Q.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2017, 139, 3784.CrossRefGoogle Scholar
  11. 11.
    Xia, Y.; Qu, S.; Xiao, Q.; Wang, Z.-X.; Qu, P.; Chen, L.; Liu, Z.; Tian, L.; Huang, Z.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2013, 135, 13502.CrossRefGoogle Scholar
  12. 12.
    Zheng, Y.; Bao, M.; Yao, R.; Qui, L.; Xu, X. Chem. Commun. 2018, 350.Google Scholar
  13. 13.
    González, J.; López, L. A.; Vicente, R. Chem. Commun. 2014, 8536.Google Scholar
  14. 14.
    Mata, S.; López, L. A.; Vicente, R. Synlett 2015, 2685.Google Scholar
  15. 15.
    Song, B.; Li, L.-H.; Song, X.-R.; Qiu, Y.-F.; Zhong, M.-J.; Zhou, P.-X.; Liang, Y.-M. Chem.–Eur. J. 2014, 20, 5910.CrossRefGoogle Scholar
  16. 16.
    Mata, S.; González, J.; Vicente, R.; López, L. A. Eur. J. Org. Chem. 2016, 2681.Google Scholar
  17. 17.
    González, J.; López, L. A.; Vicente, R. Org. Lett. 2014, 16, 5780.CrossRefGoogle Scholar
  18. 18.
    González, J.; López, E.; Vicente, R. Chem. Commun. 2014, 50, 5379.CrossRefGoogle Scholar
  19. 19.
    Wang, K.; Chen, P.; Ji, D.; Zhang, X.; Xu, G.; Sun, J. Angew. Chem., Int. Ed. 2018, 57, 12489.CrossRefGoogle Scholar
  20. 20.
    Xia, Y.; Chen, L.; Qu, P.; Ji, G.; Feng, S.; Xiao, Q.; Zhang, Y.; Wang, J. J. Org. Chem. 2016, 81, 10484.CrossRefGoogle Scholar
  21. 21.
    Zhu, D.; Ma, J.; Luo, K.; Fu, H.; Zhang, L.; Zhu, S. Angew. Chem. 2016, 128, 8592.CrossRefGoogle Scholar
  22. 22.
    Hong, S. Y.; Jeong, J.; Chang, S. Angew. Chem., Int. Ed. 2017, 56, 2408.CrossRefGoogle Scholar
  23. 23.
    Luo, H.; Chen, K.; Jiang, H.; Zhu, S. Org. Lett. 2016, 18, 5208.CrossRefGoogle Scholar
  24. 24.
    Liu, P.; Sun, J. Org. Lett. 2017, 19, 3482.CrossRefGoogle Scholar
  25. 25.
    Ma, J.; Jiang, H.; Zhu, S. Org. Lett. 2014, 16, 4472.CrossRefGoogle Scholar
  26. 26.
    Dong, J.; Bao, L.; Hu, Z.; Ma, S.; Zhou, X.; Hao, M.; Ni, N.; Xu, X. Org. Lett. 2018, 20, 1244.CrossRefGoogle Scholar
  27. 27.
    Cao, H.; Zhan, H.; Cen, J.; Lin, J.; Lin, Y.; Zhu, Q.; Fu, M.; Jiang, H. Org. Lett. 2013, 15, 1080.CrossRefGoogle Scholar
  28. 28.
    Mata, S.; López, L. A.; Vicente, R. Chem.–Eur. J. 2015, 21, 8998.CrossRefGoogle Scholar
  29. 29.
    Jasselin-Hinschberger, A.; Comy, C.; Chartoire, A.; Fort, Y. Eur. J. Org. Chem. 2015, 2321.Google Scholar
  30. 30.
    Sirakanyan, S. N.; Hovakimyan, A. A.; Noravyan, A. S. Russ. Chem. Rev. 2015, 84, 441. [Usp. Khim. 2015, 84, 441.]Google Scholar
  31. 31.
    Kuroda, H.; Hanaki, E.; Izawa, H.; Kano, M.; Itahashi, H. Tetrahedron 2004, 60, 1913.CrossRefGoogle Scholar
  32. 32.
    Kuroda, H.; Hanaki, E.; Kawakami, M. A. Tetrahedron Lett. 1999, 40, 3753.CrossRefGoogle Scholar
  33. 33.
    Golovanov, A. A.; Bekin, V. V.; Zlotskii, S. S.; Kunavin, Yu. A.; Vologzhanina, A. S.; Gusev, D. M.; Bunev, A. S. Chem. Heterocycl. Compd. 2015, 51, 929. [Khim. Geterotsikl. Soedin. 2015, 51, 929.]Google Scholar
  34. 34.
    Golovanov, A. A.; Gusev, D. M.; Vologzhanina, A. V.; Bekin, V. V.; Pisareva, V. S. Russ. J. Org. Chem. 2014, 50, 13. [Zh. Org. Khim. 2014, 50, 21.]Google Scholar
  35. 35.
    Xu, C.; Wittman, S.; Gemander, M.; Ruohonen, V.; Clark, J. S. Org. Lett. 2017, 19, 3556.CrossRefGoogle Scholar
  36. 36.
    Liang, L.; Dong, X.; Huang, Y. Chem.–Eur. J. 2017, 23, 7882.CrossRefGoogle Scholar
  37. 37.
    Zhu, C.-Z.; Sun, Y.-L.; Wei, Y.; Shi, M. Adv. Synth. Catal. 2017, 359, 1263.CrossRefGoogle Scholar
  38. 38.
    Casey, C. P.; Strotman, N. A. J. Org. Chem. 2005, 70, 2576.CrossRefGoogle Scholar
  39. 39.
    Wang, Y.-H.; Liu, H.; Zhu L.-L.; Li, X.-X.; Chen, Z. Adv. Synth. Catal. 2011, 353, 707.CrossRefGoogle Scholar
  40. 40.
    Golovanov, A. A.; Odin, I. S.; Vologzhanina, A. V.; Bekin, V. V.; Nebritova, A. E. Russ. J. Org. Chem. 2014, 50, 943. [Zh. Org. Khim. 2014, 50, 963.]Google Scholar
  41. 41.
    Golovanov, A. A.; Bekin, V. V.; Odin, I. S.; Chertov, A. Yu.; Grigor'eva, O. B.; Pisareva, V. S. Russ. J. Org. Chem. 2015, 51, 1688. [Zh. Org. Khim. 2015, 51, 1723.]Google Scholar
  42. 42.
    Clark, J. S.; Romiti, F.; Hogg, K. F.; Hamid, M. H. S. A.; Richter, S. C.; Boyer, A.; Redman, J. C.; Farrugia, L. J. Angew. Chem., Int. Ed. 2015, 54, 5744.CrossRefGoogle Scholar
  43. 43.
    Saulnier, S.; Golovanov, A. A.; Ivanov, A. Yu.; Boyarskaya, I. A.; Vasilyev, A. V. J. Org. Chem. 2016, 81, 1967.CrossRefGoogle Scholar
  44. 44.
    Saulnier, S.; Golovanov, A. A.; Vasilyev, A. V. RSC Adv. 2016, 6, 103546.CrossRefGoogle Scholar
  45. 45.
    Ren, Y.; Meng, L.-G.; Peng, T.; Wang, L. Org. Lett. 2018, 20, 4430.CrossRefGoogle Scholar
  46. 46.
    Yu, Y.; Chen, Y.; Wu, W.; Jiang, H. Chem. Commun. 2017, 53, 640.CrossRefGoogle Scholar
  47. 47.
    Yashiro, K.; Ito, S.; Kayaki, S.; Sakata, K.; Mizota, I.; Hachiya, I.; Shimizu, M. Tetrahedron 2016, 72, 6875.CrossRefGoogle Scholar
  48. 48.
    Reddy, C. R.; Reddy, M. D. J. Org. Chem. 2014, 79, 106.CrossRefGoogle Scholar
  49. 49.
    Нack, D.; Chauhan, P.; Deckers, K.; Hermann, G. N.; Martens, L.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 5188.CrossRefGoogle Scholar
  50. 50.
    Odin, I. S.; Golovanov, A. A.; Bekin, V. V.; Pisareva, V. S. Chem. Heterocycl. Compd. 2014, 49, 1687. [Khim. Geterotsikl. Soedin. 2013, 1818.]Google Scholar
  51. 51.
    Golovanov, A. A.; Odin, I. S. Russ. J. Org. Chem. 2015, 51, 447. [Zh. Org. Khim. 2015, 51, 460.]Google Scholar
  52. 52.
    Golovanov, A. A.; Odin, I. S.; Bekin, V. V.; Vologzhanina, A. V.; Bushmarinov, I. S.; Zlotskii, S. S.; Gerasimov, Yu. L.; Purygin, P. P. Russ. J. Org. Chem. 2016, 52, 414. [Zh. Org. Khim. 2016, 52, 434.]Google Scholar
  53. 53.
    Rakshin, S. O.; Odin, I. S.; Sosnin, I. M.; Zatynatskiy, E. A.; Ostapenko, G. I.; Golovanov, A. A. Russ. Chem. Bull., Int. Ed. 2018, 67, 1710. [Izv. Akad. Nauk, Ser. Khim. 2018, 1710.]Google Scholar
  54. 54.
    Li, F.; Hu, P.; Sun, M.; Li, C.; Jia, X.; Li, J. Chem. Commun. 2018, 6412.Google Scholar
  55. 55.
    Luo, X.; Ge, L.-S.; An, X.-L.; Jin, J.-H.; Wang, Yu.; Sun, P.-P.; Deng, W.-W. J. Org. Chem. 2015, 80, 4611.CrossRefGoogle Scholar
  56. 56.
    Wen, M.; Sun, P.-P.; Luo, X.; Deng, W.-P. Tetrahedron 2018, 74, 4168.CrossRefGoogle Scholar
  57. 57.
    Biswas, S.; Malee, D.; Guin, S.; Samanta, S. J. Org. Chem. 2017, 82, 10928.CrossRefGoogle Scholar
  58. 58.
    Miller, R. D.; Reiser, O. J. Heterocycl. Chem. 1993, 30, 755.CrossRefGoogle Scholar
  59. 59.
    Pankova, A. S.; Golubev, P. R.; Ananyev, I. V.; Kuznetsov, M. A. Eur. J. Org. Chem. 2012, 5965.Google Scholar
  60. 60.
    Shokova, E. A.; Kim, J. K.; Kovalev, V. V. Russ. J. Org. Chem. 2015, 51, 755. [Zh. Org. Khim. 2015, 51, 773.]Google Scholar
  61. 61.
    am Ende, C. W.; Zhou, Z.; Parker, K. A. J. Am. Chem. Soc. 2013, 135, 582.CrossRefGoogle Scholar
  62. 62.
    Golovanov, A. A.; Odin, I. S.; Vologzhanina, A. V.; Voronova, E. D.; Anoshina, O. S.; Bekin, V. V. Russ. J. Org. Chem. 2017, 53, 1664. [Zh. Org. Khim. 2017, 53, 1629.]Google Scholar
  63. 63.
    Golovanov, A. A.; Zatynatskiy, E. A.; Odin, I. S.; Dorogov, M. V.; Vikarchuk, A. A. Russ. J. Org. Chem. 2018, 54, 662. [Zh. Org. Khim. 2018, 54, 657.]Google Scholar
  64. 64.
    Botvinnik, E. V.; Blandov, A. N.; Kuznetsov, M. A. Russ. J. Org. Chem. 2001, 37, 421. [Zh. Org. Khim. 2001, 37, 446.]Google Scholar
  65. 65.
    Waldo, J. P.; Mehta, S.; Larock, R. C. J. Org. Chem. 2008, 73, 6666.CrossRefGoogle Scholar
  66. 66.
    Kolos, N. N.; Orlov, V. D.; Slobodina, E. K.; Yur'eva, E. Yu.; Korshunov, S. P.; Zyong van Tué Chem. Heterocycl. Compd. 1992, 28, 222. [Khim. Geterotsikl. Soedin. 1992, 267.]Google Scholar
  67. 67.
    Golubev, P. V.; Pankova, A. S.; Kuznetsov, M. A. J. Org. Chem. 2015, 80, 4545.CrossRefGoogle Scholar
  68. 68.
    Golubev, P. R.; Pankova, A. S.; Kuznetsov, M. A. Eur. J. Org. Chem. 2014, 3614.Google Scholar
  69. 69.
    Golubev, P.; Karpova, E. A.; Pankova, A. S.; Sorokina, M.; Kuznetsov, M. A. J. Org. Chem. 2016, 81, 11268.CrossRefGoogle Scholar
  70. 70.
    Rode, N. D.; Abdalghani, I.; Arcadi, A.; Aschi, M.; Chiarini, M.; Marinelli, F. J. Org. Chem. 2018, 83, 6354.CrossRefGoogle Scholar
  71. 71.
    Rode, N. D.; Arcadi, A.; Chiarini, M.; Marinelli, F. Synthesis 2017, 2501.Google Scholar
  72. 72.
    Rode, N. D.; Arcadi, A.; Chiarini, M.; Marinelli, F.; Portalone, G. Adv. Synth. Catal. 2017, 359, 3371.CrossRefGoogle Scholar
  73. 73.
    Matveeva, M.; Golovanov, A.; Borisova, T.; Titov, A.; Varlamov, A.; Shaabani, A.; Obydennik, A.; Voskressensky, L. Mol. Catal. 2018, 461, 67.CrossRefGoogle Scholar
  74. 74.
    Shaabani, A.; Afsahri, R.; Hooshmand, S. E.; Tabatabaei, A. T.; Hajishaabanha, F. RSC Adv. 2016, 6, 18113.CrossRefGoogle Scholar
  75. 75.
    Matveeva, M. D.; Borisova, T. N.; Titov, A. A.; Anikina, L. V.; Dyachenko, S. V.; Astakhov, G. S.; Varlamov, A. V.; Voskressensky, L. G. Synthesis 2017, 5251.Google Scholar
  76. 76.
    Nevskaya, A. A.; Matveeva, M. D.; Borisova, T. N.; Niso, M.; Colabufo, N. A.; Boccarelli, A.; Purgatorio, R.; de Candia, M.; Cellamare, S.; Voskressensky, L. G.; Altomare, C. D. ChemMedChem 2018, 13, 1588.CrossRefGoogle Scholar
  77. 77.
    Kuehne, M. E.; Bornmann, W. G.; Earley, W. G.; Marko, I. J. Org. Chem. 1986, 51, 2913.CrossRefGoogle Scholar
  78. 78.
    He, Y.; Xie, Y.; Wang, Y.; Bin, X.; Hu, D.; Wang, H.-S.; Pan, Y.-M. RSC Adv. 2016, 6, 58988.CrossRefGoogle Scholar
  79. 79.
    Natarajan, R.; Rappai, J. P.; Unnikrishnan, P. A.; Radhamani, S.; Prathapan, S. Synlett 2015, 2467.Google Scholar
  80. 80.
    Pramanik, M. M. D.; Kant, R.; Rastogi, N. Tetrahedron 2014, 70, 5214.CrossRefGoogle Scholar
  81. 81.
    Zhang, B.; Huang, L.; Yin, S.; Li, X.; Xu, T.; Zhuang, B.; Wang, T.; Zhang, Z.; Hashmi, S. K. Org. Lett. 2017, 19, 4327.CrossRefGoogle Scholar
  82. 82.
    Chen, Z.-S.; Yang, F.; Ling, H.; Li, M.; Gao, J.-M.; Ji, K. Org. Lett. 2016, 18, 5828.CrossRefGoogle Scholar
  83. 83.
    Saulnier, S.; Lozovskiy, S. V.; Golovanov, A. A.; Ivanov, A. Yu.; Vasilyev, A. V. Eur. J. Org. Chem. 2017, 3635.Google Scholar
  84. 84.
    Rosiak, A.; Christoffers, J. Tetrahedron Lett. 2006, 47, 5095.CrossRefGoogle Scholar
  85. 85.
    Rosiak, A.; Müller, R. M.; Christoffers, J. Monatsh. Chem. 2007, 138, 13.CrossRefGoogle Scholar
  86. 86.
    Pankova, A. S.; Stukalov, A. Yu.; Kuznetsov, M. A. Org. Lett. 2015, 17, 1826.CrossRefGoogle Scholar
  87. 87.
    Chinta, B. S.; Baire, B. J. Org. Chem. 2015, 80, 10208.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alexander A. Golovanov
    • 1
    Email author
  • Dmitry M. Gusev
    • 1
  • Ivan S. Odin
    • 1
  • Simon S. Zlotskii
    • 2
  1. 1.Togliatti State UniversityTogliattiRussia
  2. 2.Ufa State Petroleum Technological UniversityUfaRussia

Personalised recommendations