Advertisement

Chemistry of Heterocyclic Compounds

, Volume 55, Issue 4–5, pp 300–306 | Cite as

Aryl alkynoates in the radical synthesis of coumarins

  • Viktoriia S. MoskvinaEmail author
  • Volodymir P. Khilya
Article
  • 15 Downloads

Radical reactions occupy a significant place in synthetic organic chemistry and significantly complement and expand modern approaches to the synthesis of substituted coumarins. This minireview summarizes various synthetic approaches to the construction of the coumarin system, based on radical cascade reactions starting with aryl alkynoates. The methods considered for constructing the coumarin system include cyclization reactions with the formation of two C–C bonds, as well as one C–C bond and C–P, C–S, C–Se, C–Hal bonds.

Keywords

aryl alkynoates coumarins cascade reactions cyclization radical reactions 

References

  1. 1.
    Barot, K. P.; Jain, S. V.; Kremer, L.; Singh, S.; Ghate, M. D. Med. Chem. Res. 2015, 24, 2771.CrossRefGoogle Scholar
  2. 2.
    Tasior, M.; Kim, D.; Singha, S.; Krzeszewski, M.; Ahn, K. H.; Gryko, D. T. J. Mater. Chem. C 2015, 3, 1421.CrossRefGoogle Scholar
  3. 3.
    Deepthi, A.; Sathi, V.; Nair, V. Tetrahedron Lett. 2018, 29, 2767.CrossRefGoogle Scholar
  4. 4.
    Ni, S.; Zhou, J.; Mei, H.; Han, J. Tetrahedron Lett. 2018, 14, 1309.CrossRefGoogle Scholar
  5. 5.
    Huang, M.-H.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Chem. Commun. 2018, 54, 10791.CrossRefGoogle Scholar
  6. 6.
    Moskvina, V. S.; Khilya, V. P. Khim. Prirod. Soedinen. 2019, 55, 341.Google Scholar
  7. 7.
    Ryabukhin, D. S.; Vasilyev, A. V. Russ. Chem. Rev. 2016, 85, 637. [Usp. Khim. 2016, 85, 637.]Google Scholar
  8. 8.
    Delcourt, M.-L.; Reynaud, C.; Turcaud, S.; Favereau, L.; Crassous, J.; Micouin, L.; Benedetti, E. J. Org. Chem. 2019, 84, 888.CrossRefGoogle Scholar
  9. 9.
    Zhu, F.; Wu, X.-F. Org. Lett. 2018, 20, 3422.CrossRefGoogle Scholar
  10. 10.
    Mi, X.; Wang, C.; Huang, M.; Wu, Yu.; Wu, Ya. J. Org. Chem. 2015, 80, 148.CrossRefGoogle Scholar
  11. 11.
    Wang, Q.; Yang, C.; Jiang, C. Org. Biomol. Chem. 2018, 16, 8196.CrossRefGoogle Scholar
  12. 12.
    Kawaai, K.; Yamaguchi, T.; Yamaguchi, E.; Endo, S.; Tada, N.; Ikari, A.; Itoh, A. J. Org. Chem. 2018, 83, 1988.CrossRefGoogle Scholar
  13. 13.
    Yan, K.; Yang, D.; Wei, W.; Wang, F.; Shuai, Yu.; Li, Q.; Wang, H. J. Org. Chem. 2015, 80, 1550.CrossRefGoogle Scholar
  14. 14.
    Liu, T.; Ding, Q.; Zong, Q.; Qiu, G. Org. Chem. Front. 2015, 2, 670.CrossRefGoogle Scholar
  15. 15.
    Yang, S.; Tan, H.; Ji, W.; Zhang, X.; Li, P.; Wang, L. Adv. Synth. Catal. 2017, 359, 443.CrossRefGoogle Scholar
  16. 16.
    Liu, Y.; Wang, Q.-L.; Zhou, C.-S.; Xiong, B.-Q.; Zhang, P.-L.; Kang, S.-J.; Yang, C.-A.; Tang, K.-W. Tetrahedron Lett. 2018, 59, 2038.CrossRefGoogle Scholar
  17. 17.
    Pan, C.; Chen, R.; Shao, W.; Yu, J.-T. Org. Biomol Chem. 2016, 14, 9033.CrossRefGoogle Scholar
  18. 18.
    Feng, S.; Xie, X.; Zhang, W.; Liu, L.; Zhong, Z.; Xu, D.; She, X. Org. Lett. 2016, 18, 3846.CrossRefGoogle Scholar
  19. 19.
    Liu, T.; Ding, Q.; Qiu, G.; Wu, J. Tetrahedron 2016, 72, 279.CrossRefGoogle Scholar
  20. 20.
    Yu, Y.; Zhuang, S.; Liu, P.; Sun, P. J. Org. Chem. 2016, 81, 11489.CrossRefGoogle Scholar
  21. 21.
    Zhang, W.; Yang, C.; Pan, Y.-L.; Li, X.; Cheng, J.-P. Org. Biomol. Chem. 2018, 16, 5788.CrossRefGoogle Scholar
  22. 22.
    Li, Y.; Lu, Y.; Qiu, G.; Ding, Q. Org Lett. 2014, 16, 4240.CrossRefGoogle Scholar
  23. 23.
    Zhang, X.; Li, Y.; Hao, X.; Jin, K.; Zhang, R.; Duan, C. Tetrahedron 2018, 51, 7358.CrossRefGoogle Scholar
  24. 24.
    Chen, L.; Wu, L.; Duan, W.; Wang, T.; Li, L.; Zhang, K.; Zhu, J.; Peng, Z.; Xiong, F. J. Org. Chem. 2018, 83, 8607.CrossRefGoogle Scholar
  25. 25.
    Bu, M.-J.; Lu, G.-P.; Cai, C. Catal. Commun. 2018, 114, 70.CrossRefGoogle Scholar
  26. 26.
    Zhu, M.; Fu, W.; Wang, Z.; Xu, C.; Ji, B. Org. Biomol. Chem. 2017, 15, 9057.CrossRefGoogle Scholar
  27. 27.
    Fu, W.; Zhu, M.; Zou, G.; Xu, C.; Wang, Z.; Ji, B. J. Org. Chem. 2015, 9, 4766.CrossRefGoogle Scholar
  28. 28.
    Mi, X.; Wang, C.; Huang, M.; Zhang, J.; Wu, Y.; Wu, Y. Org. Lett. 2014, 16, 3356.CrossRefGoogle Scholar
  29. 29.
    Liu, D.; Chen, J.-Q.; Wang, X.-Z.; Xu, P.-F. Adv. Synth. Catal. 2017, 359, 2773.CrossRefGoogle Scholar
  30. 30.
    Zeng, Y.-F.; Tan, D.-H.; Chen, Y.; Lv, W.-X.; Liu, X.-G.; Li, Q.; Wnahg, H. Org. Chem. Front. 2015, 2, 1511.CrossRefGoogle Scholar
  31. 31.
    Gao, W.-C.; Liu, T.; Zhang, B.; Li, X.; Wei, W.-L.; Liu, Q.; Tian, J.; Chang, H.-H. J. Org. Chem. 2016, 81, 11297.CrossRefGoogle Scholar
  32. 32.
    Wu, W.; An, Y.; Li, J.; Yang, S.; Zhu, Z.; Jiang, H. Org. Chem. Front. 2017, 4, 1751.CrossRefGoogle Scholar
  33. 33.
    Yang, W.; Yang, S.; Li, P.; Wang, L. Chem. Commun. 2015, 51, 7520.CrossRefGoogle Scholar
  34. 34.
    Wei, W.; Wen, J.; Yang, D.; Guo, M.; Wang, Y.; You, J.; Wang, H. Chem. Commun. 2015, 51, 768.CrossRefGoogle Scholar
  35. 35.
    Zheng, D.; Yu, J.; Wu, J. Angew. Chem., Int. Ed., 2016, 55, 11925.CrossRefGoogle Scholar
  36. 36.
    Chen, Z.; Liu, N.-W.; Bolte, H.; Ren, H.; Manolikakes, G. Green Chem. 2018, 13, 3059.CrossRefGoogle Scholar
  37. 37.
    Ren, H.; Zhang, M.; Zhang, A. Q. Tetrahedron 2018, 33, 4435.CrossRefGoogle Scholar
  38. 38.
    Mantovani, A. C.; Goulart, T. A. C.; Back, D. F.; Menezes, P. H.; Zeni, G. J J. Org. Chem. 2014, 79, 10526.CrossRefGoogle Scholar
  39. 39.
    Qiu, G.; Liu, T.; Ding, Q. Org. Chem. Front. 2016, 3, 510.CrossRefGoogle Scholar
  40. 40.
    Sasaki, T.; Moriyama, K.; Togo, H. Beilstein J. Org. Chem. 2018, 14, 345.CrossRefGoogle Scholar
  41. 41.
    Feng, S.; Li, J.; Liu, Z.; Sun, H.; Shi, H.; Wang, X.; Xie, X.; She, X. Org. Biomol. Chem. 2017, 41, 8820.Google Scholar
  42. 42.
    Ni, S.; Cao, J.; Mei, H.; Han, J.; Li, S.; Pan, Y. Green Chem. 2016, 18, 3935.CrossRefGoogle Scholar
  43. 43.
    Wang, Z.; Li, X.; Wang, L.; Li, P. Tetrahedron 2019, 75, 1044.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.V. P. Kukhar Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations