Advertisement

Chemistry of Heterocyclic Compounds

, Volume 55, Issue 2, pp 142–146 | Cite as

Reactivity of oximes of 1-aryl(hetaryl)-2-(hydroxyamino)propan-1-ones with ethyl glyoxylate

  • Elena B. Nikolaenkova
  • Alexei Ya. TikhonovEmail author
  • Stanislav Yu. Grishchenko
Article
  • 29 Downloads

Alkyl(hetero)aromatic α-hydroxyamino oximes with the anti configuration of the oxime group reacted with ethyl glyoxylate to form 5-aryl(hetaryl)-1-hydroxy-1H-imidazole-2-carboxylic acid ethyl esters. In the case of 4-fluorophenyl-, 4-chlorophenyl-, and 4-methoxyphenyl-substituted α-hydroxyamino oximes, 3-aryl-5-hydroxy-5,6-dihydro-4H-1,2,5-oxadiazine-6-carboxylic acid ethyl esters were also formed. The positions of the substituents in the imidazole ring were established on the basis of a comparative analysis of the spectroscopic data of these products and the synthesized isomeric compound, 1-hydroxy-5-methyl-4-phenyl-1H-imidazole-2-carboxylic acid ethyl ester. 5-Aryl(hetaryl)-1H-imidazole-2-carboxylic acids were obtained in the reaction of 5-aryl(hetaryl)-1-hydroxy-1H-imidazole-2-carboxylic acids ethyl esters with chloroacetone.

Keywords

esters of 5-hydroxy-3-aryl-5,6-dihydro-4H-1,2,5-oxadiazine-6-carboxylic acid esters of 1-hydroxy-1H-imidazole-2-carboxylic acids ethyl glyoxylate hydroxyamino oximes 

Notes

The authors are grateful to the Chemical Service Center for Collective Use of the Siberian Branch of the Russian Academy of Sciences for conducting spectral and analytical studies.

The authors are indebted to V. M. Mamatyuk (N. N. Vorozhtsov Institute of Organic Chemistry of the Siberian Branch of the Russian academy of Sciences) for his help in recording and discussing the 13C NMR spectra of imidazoles and Candidate of Chemical Sciences S. A. Amitina for participation in carrying out the synthetic experiments.

References

  1. 1.
    Nikitina, P. A.; Perevalov, V. P. Chem. Heterocycl. Compd. 2017, 53, 123. [Khim. Geterotsikl. Soedin. 2017, 53, 123.]Google Scholar
  2. 2.
    (а) Stensbøl, T. B.; Uhlmann, P.; Morel, S.; Eriksen, B. L.; Felding, J.; Kromann, H.; Hermit, M. B.; Greenwood, J. R.; Braüner-Osborne, H.; Madsen, U.; Junager, F.; Krogsgaard-Larsen, P.; Begtrup, M.; Vedsø, P. J. Med. Chem. 2002, 45, 19. (b) Eriksen, B. L.; Vedsø, P.; Morel, S.; Begtrup M. J. Org. Chem. 1998, 63, 12.Google Scholar
  3. 3.
    Havez, S.; Begtrup, M.; Vedsø, P.; Andersen, K.; Ruhland, T. J. Org. Chem. 1998, 63, 7418.CrossRefGoogle Scholar
  4. 4.
    (а) Amitina, S. A.; Tikhonov, A. Ya.; Grigor'ev, I. A.; Gatilov, Yu. V.; Selivanov, B. A. Chem. Heterocycl. Compd. 2009, 45, 691. [Khim. Geterotsikl. Soedin., 2009, 868.] (b) Nikolaenkova, E. B.; Tikhonov, A. Ya.; Amitina, S. A.; Gatilov, Yu. V. Chem. Heterocycl. Compd. 2014, 50, 699. [Khim. Geterotsikl. Soedin. 2014, 761.]Google Scholar
  5. 5.
    (a) Wang, X.; Zhao, C.; Gao, L.; Zhou, Y.; Xu, L. J. Heterocycl. Chem. 2018, 55, 2619. (b) Song, Z.; DeMarco, A.; Zhao, M.; Corley, E. G.; Thompson, A. S.; McNamara, J.; Li, Y.; Rieger, D.; Sohar, P.; Mathre, D. J.; Tschaen, D. M.; Reamer, R. A.; Huntington, M. F.; Ho, G.-J.; Tsay, F.-R.; Emerson, K.; Shuman, R.; Grabowski, E. J. J.; Reider, P. J. J. Org. Chem. 1999, 64, 1859. (c) Galeazzi, E.; Guzmán, A.; Nava, J. L.; Liu, Y.; Maddox, M. L.; Muchowski, J. M. J. Org. Chem. 1995, 60, 1090.Google Scholar
  6. 6.
    Jarrad, A. M.; Debnath, A.; Miyamoto, Y.; Hansford, K. A.; Pelingon, R.; Butler, M. S.; Bains, T.; Karoli, T.; Blaskovich, M. A. T.; Eckmann, L.; Cooper, M. A. Eur. J. Med. Chem. 2016, 120, 353.CrossRefGoogle Scholar
  7. 7.
    (a) Shiga, N.; Takayanagi, S.; Muramoto, R.; Murakami, T.; Qin, R.; Suzuki, Y.; Shinohara, K.; Kaneda, A.; Nemoto, T. Bioorg. Med. Chem. Lett. 2017, 27, 2197. (b) Guo, C.; Kawamoto, Y.; Asamitsu, S.; Sawatani, Y.; Hashiya, K.; Bando, T.; Sugiyama, H. Bioorg. Med. Chem. 2015, 23, 855.Google Scholar
  8. 8.
    Selivanov, B. A.; Tikhonov, A. Ya. Russ. Chem. Bull., Int. Ed. 2013, 62, 1232. [Izv. Akad. Nauk, Ser. Khim. 2013, 1232.]Google Scholar
  9. 9.
    van Hirschheydt, T.; Voss, E. US Patent 20050085473; Chem. Abstr. 2005, 142, 411373.Google Scholar
  10. 10.
    (a) Samsonov, V. A. Russ. J. Org. Chem. 2017, 53, 66. [Zh. Org. Khim. 2017, 53, 71.] (b) Nikolaenkova, E. B.; Os'kina, I. A.; Tikhonov, A. Ya. Russ. J. Org. Chem. 2017, 53, 1887. [Zh. Org. Khim. 2017, 53, 1851.]Google Scholar
  11. 11.
    Amitina, S. A.; Grigor'ev, I. A.; Tikhonov, A. Ya. Russ. Chem. Bull., Int. Ed. 2006, 55, 1046. [Izv. Akad. Nauk, Ser. Khim. 2006, 1008.]Google Scholar
  12. 12.
    Volodarskii, L. B.; Koptyug, V. A.; Lysak, А. N. Zh. Obshch. Khim. 1966, 2, 114; Chem. Abstr. 1966, 64, 75637.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Elena B. Nikolaenkova
    • 1
  • Alexei Ya. Tikhonov
    • 1
    Email author
  • Stanislav Yu. Grishchenko
    • 1
  1. 1.N. N. Vorozhtsov Novosibirsk Institute of Organic ChemistrySiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations