Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 12, pp 1172–1174 | Cite as

The influence of Lewis acid catalyst on the kinetic and molecular mechanism of nitrous acid elimination from 5-nitro-3-phenyl-4,5-dihydroisoxazole: DFT computational study

  • Agnieszka Łapczuk-Krygier
  • Jolanta Jaśkowska
  • Radomir JasińskiEmail author
Article
  • 16 Downloads

The molecular mechanism of nitrous acid elimination from 5-nitro-3-phenyl-4,5-dihydroisoxazole systems has been explored using DFT computational study. It was found that under both catalytic and non-catalytic conditions, these processes proceed according to a one-step asynchronous mechanism. The asynchronicity of transition state is determined by presence of Lewis acid catalyst. However, it is not enough to force an ionic mechanism. The proposed pattern can be considered as a general mechanism for this group of heterocyclic compounds.

Keywords

isoxazoles nitrous acid elimination DFT study mechanism 

Notes

All calculations reported in this manuscript were performed on Prometheus cluster in the CYFRONET regional computational center in Cracow.

References

  1. 1.
    Varvounis, G.; Gerontitis, I. E.; Gkalpinos, V. Chem. Heterocycl. Compd. 2018, 54, 249. [Khim. Geterotsikl. Soedin. 2018, 54, 249.]Google Scholar
  2. 2.
    Markitanov, Yu. N.; Timoshenko, V. M.; Shermolovich, Yu. G. Chem. Heterocycl. Compd. 2018, 54, 89. [Khim. Geterotsikl. Soedin. 2018, 54, 89.]Google Scholar
  3. 3.
    Sysak, A.; Obmińska-Mrukowicz, B. I. Eur. J. Med. Chem. 2017, 137, 292.Google Scholar
  4. 4.
    Zhang, H.-Z.; Zhao, Z.-L.; Zhou, C.-H. Eur. J. Med. Chem. 2018, 144, 444.Google Scholar
  5. 5.
    Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon: Richmond, 1990.Google Scholar
  6. 6.
    Advances in Quantum Chemistry; Sabin, J., Brandas, E., Eds.; Academic Press, 1985.Google Scholar
  7. 7.
    Muhlstadt, V. M.; Schulze, B. J. Prakt. Chem. 1971, 313, 745.Google Scholar
  8. 8.
    Koroleva, E. V.; Bondar, N. F.; Katok, Ya. M.; Chekanov, N. A.; Chernikhova, T. V. Chem. Heterocycl. Compd. 2007, 43, 362. [Khim. Geterotsikl. Soedin. 2007, 447.]Google Scholar
  9. 9.
    Jasiński, R.; Jasińska, E.; Dresler, E. J. Mol. Model. 2017, 23, 13.Google Scholar
  10. 10.
    Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.Google Scholar
  11. 11.
    Kącka, A.; Jasiński, R. Comput. Theor. Chem. 2017, 1104, 37.Google Scholar
  12. 12.
    Kącka, A.; Domingo, L. R.; Jasiński, R. Res. Chem. Intermed. 2018, 44, 325.Google Scholar
  13. 13.
    Domingo, L. R. RSC Adv. 2014, 4, 32415.Google Scholar
  14. 14.
    Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.; WILEY-VCH Verlag GmbH, 2008.Google Scholar
  15. 15.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 16, Revision A.03; Gaussian Inc.: Wallingford, 2016.Google Scholar
  16. 16.
    Ndassa, I. M.; Adjieufack, A. I.; Ketcha, J. M.; Berski, S.; Ríos-Gutierrez, M.; Domingo, L. R. Int. J. Quantum Chem. 2017, 117, e25451.Google Scholar
  17. 17.
    Jasiński, R. Comput. Theor. Chem. 2014, 1046, 93.Google Scholar
  18. 18.
    Jasiński, R. J. Fluorine Chem. 2014, 160, 29.Google Scholar
  19. 19.
    Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Agnieszka Łapczuk-Krygier
    • 1
  • Jolanta Jaśkowska
    • 1
  • Radomir Jasiński
    • 1
    Email author
  1. 1.Institute of Organic Chemistry and TechnologyCracow University of TechnologyCracowPoland

Personalised recommendations