Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 12, pp 1117–1120 | Cite as

1,3-Dipolar cycloaddition of diphenylnitrilimine and 5-arylmethylidene-1-phenyl-1,5,6,7-tetrahydro-4H-indazol-4-ones to afford novel spiro[indazole-5,3′-pyrazole] derivatives

  • Demin Ren
  • Guoqiang Kuang
  • Xiaofang LiEmail author
Article
  • 13 Downloads

Novel 4'-aryl-1,2',5'-triphenyl-2',4',6,7-tetrahydrospiro[indazole-5,3'-pyrazol]-4(1H)-ones have been synthesized in moderate yields by 1,3-dipolar cycloaddition of 5-arylmethylidene-1-phenyl-1,5,6,7-tetrahydro-4H-indazol-4-ones and diphenylnitrilimine, generated in situ from N-phenylbenzohydrazonoyl chloride and triethylamine. According to structural analyses by NMR spectroscopy and single crystal X-ray diffraction method, the reaction proceeds regioselectively affording products with C(5)–C(3') connectivity at the spiro center.

Keywords

indazole nitrilimine pyrazole spiro heterocycle 1,3-dipolar cycloaddition 

References

  1. 1.
    (a) Yuan, T.; Nahar, P.; Sharma, M.; Liu, K.; Slitt, A.; Asia, H. A.; Seeram, N. P. J. Nat. Prod. 2014, 77, 2316. (b) Ali, Z.; Ferreira, D.; Carvalho, P.; Avery, M. A.; Khan, I. A. J. Nat. Prod. 2008, 71, 1111.Google Scholar
  2. 2.
    Ur-Rahman, A.; Malik, S.; Cun-heng, H.; Clardy, J. Tetrahedron Lett. 1985, 26, 2759.CrossRefGoogle Scholar
  3. 3.
    Liu, Y.-M.; Yang J.-S.; Liu, Q.-H. Chem. Pharm. Bull. 2004, 52, 454.CrossRefGoogle Scholar
  4. 4.
    Jakupec, M. A.; Reisner, E.; Eichinger, A.; Pongratz, M.; Arion, V. B.; Galanski, M; Hartinger, C. G; Keppler, B. K. J. Med. Chem. 2005, 48, 2831.CrossRefGoogle Scholar
  5. 5.
    Mosti, L.; Menozzi, G.; Fossa, P.; Filippelli, W.; Gessi, S.; Rinaldi, B.; Falcone, G. Arzneim.-Forsch./Drug Res. 2000, 50, 963.Google Scholar
  6. 6.
    (a) Boulouard, M.; Schumann-Bard, P.; Butt-Gueulle, S.; Lohou, E.; Stiebing, S.; Collot, V.; Rault, S. Bioorg. Med. Chem. Lett. 2007, 17, 3177. (b) Lohou, E.; Sopkova-de Oliveira Santos, J.; Schumann-Bard, P.; Boulouard, M.; Stiebing, S.; Rault, S.; Collot, V. Bioorg. Med. Chem. 2012, 20, 5296.Google Scholar
  7. 7.
    Han, W.; Pelletier, J. C.; Hodge, C. N. Bioorg. Med. Chem. Lett. 1998, 8, 3615.CrossRefGoogle Scholar
  8. 8.
    De Angelis, M.; Stossi, F.; Carlson, K. A.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 2005, 48, 1132.CrossRefGoogle Scholar
  9. 9.
    Trost, B. M.; Brennan, M. K. Synthesis 2009, 3003.Google Scholar
  10. 10.
    Chen, H.; Shi, D. J. Comb. Chem. 2010, 12, 571.CrossRefGoogle Scholar
  11. 11.
    (a) Saliyeva, L. M.; Slyvka, N. Yu.; Mel'nyk, D. A.; Rusanov, E. B.; Vas'kevich, R. I.; Vovk, M. V. Chem. Heterocycl. Compd. 2018, 54, 130. [Khim. Geterotsikl. Soedin. 2018, 130.] (b) Barkov, A. Yi.; Zimnitskiy, N. S.; Korotaev, V. Yu.; Kutyashev, I. B.; Moshkin, V. S.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd. 2017, 53, 451. [Khim. Geterotsikl. Soedin. 2017, 451.] (c) Barkov, A. Yu.; Zimnitskiy, N. S.; Kutyashev, I. B.; Korotaev, V. Yu.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd. 2018, 54, 43. [Khim. Geterotsikl. Soedin. 2018, 54, 43.] (d) Barkov, A. Yu.; Zimnitskiy, N. S.; Kutyashev, I. B.; Korotaev, V. Yu.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd. 2017, 53, 1315. [Khim. Geterotsikl. Soedin. 2017, 53, 1315.] (e) Finke, A. O.; Mironov, M. E.; Skorova, A. B.; Shults, E. E. Chem. Heterocycl. Compd. 2018, 54, 411. [Khim. Geterotsikl. Soedin. 2018, 54, 11.]Google Scholar
  12. 12.
    Shawali, A. S. Chem. Rev. 1993, 93, 2731.CrossRefGoogle Scholar
  13. 13.
    (a) Fu, X.; Meng, Y.; Li, X.; Stepien, M.; Chmielewski, P. J. Chem. Commun. 2018, 54, 2510. (b) Li, X.; Liu, B.; Yu, X.; Yi, P.; Yi, R.; Chmielewski, P. J. J. Org. Chem. 2012, 77, 2431. (c) Yang, L.-L.; Li, X.-F.; Hu, X.-L.; Yu, X.-Y. Tetrahedron Lett. 2016, 57, 1265. (d) Liu, B.; Li, X.-F.; Liu, H.-C.; Yu, X.-Y. Tetrahedron Lett. 2013, 54, 6952.Google Scholar
  14. 14.
    (a) Girgis, A. S.; Ibrahim, Y. A.; Mishriky, N.; Lisgarten, J. N.; Potter, B. S.; Palmer, R. A. Tetrahedron 2001, 57, 2015. (b) Girgis, A. S.; Farag, H.; Ismail, N. S. M.; George, R. F. Eur. J. Med. Chem. 2011, 46, 4964.Google Scholar
  15. 15.
    Yan, J.; Deng, Z.; Kuang, G. J. Chem. Res. 2014, 38, 558.CrossRefGoogle Scholar
  16. 16.
    Wolkoff, P. Can. J. Chem. 1975, 53, 1333.CrossRefGoogle Scholar
  17. 17.
    SAINT Bruker-AXS Version 8.34A; Bruker AXS Inc.: Madison, 2014.Google Scholar
  18. 18.
    Krause, L.; Ifmer-Herbst, R.; Sheldrick, G. M.; Stalke, D. J. Appl. Crystallogr. 2015, 48, 3.CrossRefGoogle Scholar
  19. 19.
    Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.CrossRefGoogle Scholar
  20. 20.
    Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical EngineeringHunan University of Science and TechnologyXiangtanChina

Personalised recommendations