Chemistry of Heterocyclic Compounds

, Volume 54, Issue 11, pp 1070–1074 | Cite as

Synthesis of 2-substituted oxazoloquinazolinones

  • Olga BobiļevaEmail author
  • Einārs Loža

The reaction of methyl 2-isothiocyanatobenzoate and 1-azido-3-(4-substituted phenyl)propan-2-ones in the presence of triphenyl phosphine in dioxane by heating produced tricyclic (Z)-2-(4-substituted benzylidene)-2,3-dihydro-5H-oxazolo[2,3-b]quinazolin-5-ones instead of the expected methyl 2-{[5-(4-substituted benzyl)oxazol-2-yl]amino}benzoates. A one-pot procedure for the synthesis of 2-substituted 5H-oxazolo[2,3-b]quinazolin-5-ones from appropriate azidomethyl ketones and 2-isothiocyanatobenzoate was developed.


2-aminooxazole α-azido ketone isothiocyanate oxazoloquinazolinone cyclocondensation 


Financial support from the internal grant of the Latvian Institute of Organic Synthesis is acknowledged. We thank Dr. phys. Anatoly Mishnev for performing X-ray analysis.

Supplementary material

10593_2018_2394_MOESM1_ESM.pdf (4.7 mb)
ESM 1 (PDF 4778 kb)


  1. 1.
    Ciapetti, P.; Giethlen, B. In The practice of medicinal chemistry; Wermuth, C. G., Ed.; Academic Press: London, 2008, 3rd ed., p. 290.Google Scholar
  2. 2.
    Patani, G. A.; LaVoie, E. J. Chem. Rev. 1996, 96, 3147.CrossRefGoogle Scholar
  3. 3.
    Elzein, E.; Ibrahim, P.; Koltun, D. O.; Rehder, K.; Shenk, K. D.; Marquart, T. A.; Jiang, B.; Li, X.; Natero, R.; Li, Y.; Nguyen, M.; Kerwar, S.; Chu, N.; Soohoo, D.; Hao, J.; Maydanik, V. Y.; Lustig, D. A.; Zeng, D.; Leung, K.; Zablocki, J. A. Bioorg. Med. Chem. Lett. 2004, 14, 6017.CrossRefGoogle Scholar
  4. 4.
    Bobileva, O.; Ikaunieks, M.; Duburs, G.; Mandrika, I.; Petrovska, R.; Klovins, J.; Loza, E. Bioorg. Med. Chem. 2017, 25, 4314.CrossRefGoogle Scholar
  5. 5.
    Shen, H. C.; Ding, F.-X.; Luell, S.; Forrest, M. J.; Carballo-Jane, E.; Wu, K. K.; Wu, T.-J.; Cheng, K.; Wilsie, L. C.; Krsmanovic, M. L.; Taggart, A. K.; Ren, N.; Cai, T.-Q.; Deng, Q.; Chen, Q.; Wang, J.; Wolff, M. S.; Tong, X.; Holt, T. G.; Waters, M. G.; Hammond, M. L.; Tata, J. R.; Colletti, S. L. J. Med. Chem. 2007, 50, 6303.CrossRefGoogle Scholar
  6. 6.
    Frøyen, P. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 60, 81.CrossRefGoogle Scholar
  7. 7.
    Dhar, T. G. M.; Guo, J.; Shen, Z.; Pitts, W. J.; Gu, H. H.; Chen, B. C.; Zhao, R.; Bednarz, M. S.; Iwanowicz, E. J. Org. Lett. 2002, 4, 2091.CrossRefGoogle Scholar
  8. 8.
    Pellón, R. F.; Docampo, M. L.; Fascio, M. L. Synth. Commun. 2007, 37, 1853.CrossRefGoogle Scholar
  9. 9.
    Yadav, A. K.; Dhakad, P.; Sharma, G. R. Tetrahedron Lett. 2013, 54, 6061.CrossRefGoogle Scholar
  10. 10.
    Liu, M.; Shu, M.; Yao, C.; Yin, G.; Wang, D.; Huang, J. Org. Lett. 2016, 18, 824.CrossRefGoogle Scholar
  11. 11.
    Olsen, E. P. K.; Arrechea, P. L.; Buchwald, S. L. Angew. Chem., Int. Ed. 2017, 56, 10569.CrossRefGoogle Scholar
  12. 12.
    Sinha, S. K. P.; Thakur, M. P. J. Indian Chem. Soc. 1974, 51, 453.Google Scholar
  13. 13.
    Tran, K.-V.; Bickar, D. J. Org. Chem. 2006, 71, 6640.CrossRefGoogle Scholar
  14. 14.
    Choi, H. Y.; Chi, D. Y. Org. Lett. 2003, 5, 411.CrossRefGoogle Scholar
  15. 15.
    Yasohara, Y.; Kizaki, N.; Hasegawa, J.; Wada, M.; Kataoka, M.; Shimizu, S. Tetrahedron: Asymmetry 2001, 12, 1713.CrossRefGoogle Scholar
  16. 16.
    Dyke, J. M.; Groves, A. P.; Morris, A.; Ogden, J. S.; Catarino, M. I.; Dias, A. A.; Oliveira, A. M. S.; Costa, M. L.; Barros, M. T.; Cabral, M. H.; Moutinho, A. M. C. J. Phys. Chem. A 1999, 103, 8239.CrossRefGoogle Scholar
  17. 17.
    Boyer, J. H.; Straw, D. J. Am. Chem. Soc. 1952, 74, 4506.CrossRefGoogle Scholar
  18. 18.
    Sheldrick, G. M. Acta Crystallogr., Sect. A: Found Crystallogr. 2008, A64, 112.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Latvian Institute of Organic SynthesisRigaLatvia

Personalised recommendations