Chemistry of Heterocyclic Compounds

, Volume 54, Issue 11, pp 1065–1069 | Cite as

An efficient method for one-pot synthesis of 3-alkoxy-substituted chromeno[4,3-b]pyrrol-4(1H)-one derivatives

  • Xiaofeng Yang
  • Lei Jing
  • Zhiwei ChenEmail author

A one-pot two-step reaction of 4-aminocoumarin with arylglyoxal monohydrates and p-toluenesulfonates has been developed, which offers 3-alkoxy-substituted chromeno[4,3-b]pyrrol-4(1H)-ones in moderate to good yields. At first, arylglyoxal monohydrates and 4-aminocoumarin were converted into 3-hydroxychromeno[4,3-b]pyrrol-4(1H)-one intermediates in AcOH under reflux. Then the title compounds in an in situ reaction of the intermediates with p-toluenesulfonates catalyzed by DBU in refluxing toluene were obtained.


arylglyoxal monohydrates pyrrolocoumarins alkoxylation heterocycle synthesis one-pot synthesis 


Supplementary material

10593_2018_2393_MOESM1_ESM.pdf (3.1 mb)
ESM 1 (PDF 3128 kb)


  1. 1.
    (a) Liu, W.; Hua, J.; Zhou, J.; Zhang, H.; Zhu, H.; Cheng, Y.; Gust, R. Bioorg. Med. Chem. Lett. 2012, 22, 5008. (b) Bisi, A.; Cappadone, C.; Rampa, A.; Farruggia, G.; Sargenti, A.; Belluti, F.; Di Martino, R. M. C.; Malucelli, E.; Meluzzi, A.; Iotti, S.; Gobbi, S. Eur. J. Med. Chem. 2017, 127, 577. (c) Liu, M.-M.; Chen, X.-Y.; Huang, Y.-Q.; Feng, P.; Guo, Y.-L.; Yang, G.; Chen, Y. J. Med. Chem. 2014, 57, 9343.Google Scholar
  2. 2.
    Patil, S. A.; Unki, S. N.; Badami, P. S. Med. Chem. Res. 2012, 21, 4017.Google Scholar
  3. 3.
    Chandak, N.; Kumar, P.; Sharma, C.; Aneja, K. R.; Sharma, P. K. Lett. Drug Des. Discovery 2012, 9, 63.CrossRefGoogle Scholar
  4. 4.
    Manolov, I.; Maichle-Moessmer, C.; Danchev, N. Eur. J. Med. Chem. 2006, 41, 882.CrossRefGoogle Scholar
  5. 5.
    Jain, S. V.; Sonawane, L. V.; Patil, R. R.; Bari, S. B. Med. Chem. Res. 2012, 21, 165.Google Scholar
  6. 6.
    (a) Trost, B. M.; Toste, F. D.; Greenman, K. J. Am. Chem. Soc. 2003, 125, 4518. (b) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1996, 118, 6305. (c) Jia, C.; Piao, D.; Kitamura, T.; Fujiwara,Y. J. Org. Chem. 2000, 65, 7516. (d) Yamamoto, Y.; Kirai, N. Org. Lett. 2008, 10, 5513.Google Scholar
  7. 7.
    (a) Li, K. L.; Zeng, Y. B.; Neuenswander, B.; Tunge, J. A. J. Org. Chem. 2005, 70, 6515. (b) Zhang, L.; Meng, T. H.; Fan, R. H.; Wu, J. J. Org. Chem. 2007, 72, 7279. (c) Yu, X. M.; Shen, G.; Neckers, L.; Blake, H.; Holzbeierlein, J.; Cronk, B.; Blagg, B. S. J.; J. Am. Chem. Soc. 2005, 127, 12778. (d) Neyts, J.; De Clercq, E.; Singha, R.; Chang, Y. H.; Das, A. R.; Chakraborty, S. K.; Hong, S. C.; Tsay, S.-C.; Hsu, M.-H.; Hwu, J. R. J. Med. Chem. 2009, 52, 1486.Google Scholar
  8. 8.
    Iwao, M.; Ishibashi, F.; Fukuda, T.; Hasegawa, H. WO Patent 2012099129.Google Scholar
  9. 9.
    Wang, W. CN Patent 102321090.Google Scholar
  10. 10.
    (a) Alberola, A.; Álvaro, R.; González Ortega, A.; Sadaba, M. L.; Sañudo, M. C. Tetrahedron 1999, 55, 13211. (b) Majumdar, K. C.; Samanta, S. K. Tetrahedron Lett. 2002, 43, 2119. (c) Liao, Y. X.; Kuo, P. Y.; Yang, D. Y. Tetrahedron Lett. 2003, 44, 1599.Google Scholar
  11. 11.
    Paul, S.; Das, A. R. Catal. Sci. Technol. 2012, 2, 1130.Google Scholar
  12. 12.
    Peng, S. Y.; Wang, L.; Huang, J. Y.; Sun, S. F.; Guo, H. B.; Wang, J. Adv. Synth. Catal. 2013, 355, 2550.CrossRefGoogle Scholar
  13. 13.
    Zhou, T.; Wang, D.-L.; Pan, G.-Y.; Qian, J.-H. Heterocycles 2017, 94, 957.CrossRefGoogle Scholar
  14. 14.
    Chen, Z.; Yang, X.; Su, W. Tetrahedron Lett. 2015, 56, 2476.Google Scholar
  15. 15.
    Mukherjee, S.; Sarkar, S.; Pramanik, A. ChemistrySelect 2018, 3, 1537.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhouP. R. China

Personalised recommendations