Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 11, pp 1026–1032 | Cite as

New approach to the synthesis of 2,2':5',2''-terthiophene-5,5''-and 2,2':5',2'':5'',2'''-quaterthiophene-5,5'''-dicarboxylic acids

  • Anastasia S. Kostyuchenko
  • Evgeny B. Ulyankin
  • Anton L. Shatsauskas
  • Vladislav Yu. Shuvalov
  • Alexander S. Fisyuk
Article
  • 25 Downloads

The reaction of bromosuccinimide with esters of 3-substituted 2,2'-bithiophene-5-carboxylic acids was used to obtain their 5'-bromo derivatives, which were further converted to esters of 3,3'''-disubstituted 2,2':5',2'':5'',2'''-quaterthiophene-5,5'''-dicarboxylic acids by heating in DMF with catalytic amounts of Pd(PPh3)4. Ester of 3-decyl-2,2'-bithiophene-5-carboxylic acid was acylated at the С-5' position with lauroyl chloride in the presence of SnCl4, producing the respective ketone that was used in Vilsmeier–Haack reaction (DMF, POCl3). The 3-chloroacrylaldehyde derivative that was thus obtained was further used in reaction with ethyl thioglycolate in the presence of sodium ethoxide, giving ester of 3,3''-decyl-2,2':5',2''-terthiophene-5,5''-dicarboxylic acid. Alkaline hydrolysis of the obtained esters led to the corresponding 2,2':5',2'':5'',2'''-quaterthiophene-5,5'''- and 2,2':5',2''-terthiophene-5,5''-dicarboxylic acids.

Keywords

2,2':5',2'':5'',2'''-quaterthiophene-5,5'''-dicarboxylic acids 2,2':5',2''-terthiophene-5,5''-dicarboxylic acids esters of 3-alkyl-2,2'-bithiophene-5-carboxylic acids 

Notes

This work was performed with financial support from the Ministry of Education and Science of the Russian Federation (project No. 4.1657.2017/4.6).

References

  1. 1.
    Čik, G.; Krajčovič, J.; Hubinová, M; Krištin, J.; Červeň, I.; Šeršeň, F. Synth. Met. 2004, 140, 301.CrossRefGoogle Scholar
  2. 2.
    Belletête, M.; Mazerolle, L.; Desrosiers, N.; Leclerc, M.; Durocher, G. Macromolecules 1995, 28, 8587.CrossRefGoogle Scholar
  3. 3.
    DiCésare, N.; Belletête, M.; Donat-Bouillud, A.; Leclerc, M.; Durocher, G. J. Lumin. 1999, 81, 111.CrossRefGoogle Scholar
  4. 4.
    Donat-Bouillud, A; Mazerolle, L.; Gagnon, P.; Goldenberg, L.; Petty, M. C.; Leclerc, M. Chem. Mater. 1997, 9, 2815.Google Scholar
  5. 5.
    Novikova, T. S.; Barashkov, N. N.; Yassar, A.; Hmyene, M.; Ferraris, J. P. Synth. Met. 1996, 83, 47.CrossRefGoogle Scholar
  6. 6.
    Meng, H.; Huang, W. J. Org. Chem. 2000, 65, 3894.CrossRefGoogle Scholar
  7. 7.
    Tan, Sh.; Zhai, J.; Fang, H.; Jiu, T.; Ge, J.; Li, Y.; Jiang, L.; Zhu, D. Chem.–Eur. J. 2005, 11, 6272.CrossRefGoogle Scholar
  8. 8.
    Jiu, T.; Liu, H.; Fu, L.; He, X.; Wang, N.; Li, Y.; Ai, X.; Zhu, D. Chem. Phys. Lett. 2004, 398, 113.CrossRefGoogle Scholar
  9. 9.
    Jiu, T.; Liu, H.; Gan, H.; Li, Y.; Xiao, Sh.; Li, H.; Liu, Y.; Lu, F.; Jiang, L.; Zhu, D. Synth. Met. 2005, 148, 313.CrossRefGoogle Scholar
  10. 10.
    Earl, L. D.; Patrick, B. O.; Wolf, M. O. Inorg. Chem. 2013, 52, 10021.CrossRefGoogle Scholar
  11. 11.
    Ni, Z.; Yassar, A.; Antoun, T.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 12752.CrossRefGoogle Scholar
  12. 12.
    Kostyuchenko, A. S.; Yurpalov, V. L.; Kurowska, A.; Domagala, W.; Pron, A.; Fisyuk, A. S. Beilstein J. Org. Chem., 2014, 10, 1596.CrossRefGoogle Scholar
  13. 13.
    Kurowska, A.; Kostyuchenko, A. S.; Zassowski, P.; Skorka, L.; Yurpalov, V. L.; Fisyuk, A. S.; Pron, A.; Domagala, W. J. Phys. Chem. C 2014, 118, 25176.CrossRefGoogle Scholar
  14. 14.
    Kostyuchenko, A. S.; Wiosna-Salyga, G.; Kurowska, A.; Zagorska, M.; Luszczynska, B.; Grykien, R.; Głowacki, I.; Fisyuk, A. S.; Domagala, W.; Pron, A. J. Mater. Sci. 2016, 51, 2274.CrossRefGoogle Scholar
  15. 15.
    Kotwica, K.; Kostyuchenko, A. S.; Data, P.; Marszalek, T.; Skorka, L.; Jaroch, T.; Kacka, S.; Zagorska, M.; Nowakowski, R.; Monkman, A. P.; Fisyuk, A. S.; Pisula W.; Pron, A. Chem.–Eur. J. 2016, 22, 11795.Google Scholar
  16. 16.
    Kostyuchenko, A. S.; Zheleznova, T. Yu.; Stasyuk, A. J.; Kurowska, A.; Domagala, W.; Pron, A.; Fisyuk, A. S. Beilstein J. Org. Chem. 2017, 13, 313.CrossRefGoogle Scholar
  17. 17.
    Kurowska, A.; Zassowski, P.; Kostyuchenko, A. S.; Zheleznova, T. Yu.; Andryukhova, K. V.; Fisyuk, A. S.; Pron, A.; Domagala, W. Phys. Chem. Chem. Phys. 2017, 19, 30261.CrossRefGoogle Scholar
  18. 18.
    Irgashev, R. A.; Kazin, N. A.; Rusinov, G. L.; Charushin, V. N. Tetrahedron Lett. 2017, 58, 3139.CrossRefGoogle Scholar
  19. 19.
    Irgashev, R. A.; Kazin, N. A., Rusinov, G. L.; Charushin, V. N. Beilstein J. Org. Chem. 2017, 13, 1396.CrossRefGoogle Scholar
  20. 20.
    Brandsma, L.; Verkruijsse, H. D. Synth. Commun. 1988, 18, 1763.CrossRefGoogle Scholar
  21. 21.
    Gronowitz, S.; Raznikiewicz, T. Org. Synth. Coll. Vol. 1973, 5, 149.Google Scholar
  22. 22.
    Kostyuchenko, A. S.; Averkov, A. M.; Fisyuk, A. S. Org. Lett. 2014, 16, 1833.CrossRefGoogle Scholar
  23. 23.
    Kotwica, K.; Kurach, E.; Louarn, G.; Kostyuchenko, A. S.; Fisyuk, A. S.; Zagorska, M.; Pron, A. Electrochim. Acta. 2013, 111, 491.CrossRefGoogle Scholar
  24. 24.
    Konovalov, A. I.; Antipin, I. S.; Burilov, V. A.; Madzhidov, T. I.; Kurbangalieva, A. R.; Nemtarev, A. V.; Solovieva, S. E.; Stoikov, I. I.; Mamedov, V. A.; Zakharova, L. Ya.; Gavrilova, E. L.; Sinyashin O. G.; , Balova, I. A.; Vasilyev, A. V.; Zenkevich, I. G.; Krasavin, M. Yu.; Kuznetsov, M. A.; Molchanov, A. P.; Novikov, M. S.; Nikolaev, V. A.; Rodina, L. L.; Khlebnikov, A. F.; Beletskaya I. P.; Vatsadze, S. Z.; Gromov, S. P.; Zyk, N. V.; Lebedev, A. T.; Lemenovskii, D. A.; Petrosyan, V. S.; Nenaidenko, V. G.; Negrebetskii, V. V.; Baukov, Yu. I.; Shmigol', T. A.; Korlyukov, A. A.; Tikhomirov, A. S.; Shchekotikhin, A. E.; Traven', V. F.; Voskresenskii, L. G.; Zubkov, F. I.; Golubchikov, O. A.; Semeikin, A. S.; Berezin, D. B.; Stuzhin, P. A.; Filimonov, V. D.; Krasnokutskaya, E. A.; Fedorov, A. Yu.; Nyuchev, A. V.; Orlov, V. Yu.; Begunov, R. S.; Rusakov, A. I.; Kolobov, A. V.; Kofanov, E. R.; Fedotova, O. V.; Egorova, A. Yu.; Charushin, V. N.; Chupakhin, O. N.; Klimochkin, Yu. N.; Osyanin, V. A.; Reznikov, A. N.; Fisyuk, A. S.; Sagitullina, G. P.; Aksenov, A. V.; Aksenov, N. A.; Grachev, M. K.; Maslennikova, V. I.; Koroteev, M. P.; Brel', A. K.; Lisina, S. V.; Medvedeva, S. M.; Shikhaliev, Kh. S.; Suboch, G. A.; Tovbis, M. S.; Mironovich, L. M.; Ivanov, S. M.; Kurbatov, S. V.; Kletskii, M. E.; Burov, O. N.; Kobrakov, K. I.; Kuznetsov, D. N. Russ. J. Org. Chem. 2018, 54, 157. [Zh. Org. Khim. 2018, 54, 161.]Google Scholar
  25. 25.
    Kostyuchenko, A. S.; Drozdova, E. A.; Fisyuk, A. S. Chem. Heterocycl. Compd. 2017, 53, 92. [Khim. Geterotsikl. Soedin. 2017, 53, 92.]Google Scholar
  26. 26.
    Casson, S; Kocieński, P. C. J. Chem. Soc., Perkin Trans. 1 1994, 1187.Google Scholar
  27. 27.
    Tanaka, K.; Takimiya, K.; Otsubo, T.; Kawabuchi, K.; Kajihara, S.; Harima, Y. Chem. Lett. 2006, 35, 592.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anastasia S. Kostyuchenko
    • 1
    • 2
  • Evgeny B. Ulyankin
    • 1
    • 2
  • Anton L. Shatsauskas
    • 1
    • 2
  • Vladislav Yu. Shuvalov
    • 1
    • 2
  • Alexander S. Fisyuk
    • 1
    • 2
  1. 1.Omsk State Technical UniversityOmskRussia
  2. 2.F. M. Dostoyevsky Omsk State UniversityOmskRussia

Personalised recommendations