Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 6, pp 650–657 | Cite as

Convenient synthesis of 12-methyl[1]benzoxepino[3,4-b]quinolin-13(6H)-ones

  • Yu Wang
  • Mingqin Chang
  • Hong Zhang
  • Yang Li
Article
  • 20 Downloads

In this work, a construction of 12-methyl[1]benzoxepino[3,4-b]quinolin-13(6H)-ones, structurally intriguing hybrid molecules consisting of fused 4-methylquinoline and 1-benzoxepin-5-one units, has been successfully achieved via a two-step procedure, involving the onepot synthesis of 2-(aryloxymethyl)-4-methylquinoline-3-carboxylic acids followed by their intramolecular Friedel–Crafts cyclization reaction. Our synthetic protocol described here could be attractive as it is simple, easy to handle and does not involve the use of expensive reagents or catalysts.

Keywords

1-benzoxepin-5-one hybrid molecule 4-methylquinoline Friedel–Crafts cyclization one-pot synthesis 

Notes

The project was financially supported by the National Natural Science Foundation of China (Nos. 21476028 and 21402011) and the Natural Science Foundation of Liaoning Province (No. 201602006).

Supplementary material

10593_2018_2322_MOESM1_ESM.pdf (2.8 mb)
ESM 1 (PDF 2832 kb)

References

  1. 1.
    Huang, S. T.; Kuo, H. S.; Chen, C. T. Tetrahedron Lett. 2001, 42, 7473.CrossRefGoogle Scholar
  2. 2.
    Bruder, M.; Haseler, P. L.; Muscarella, M.; Lewis, W.; Moody, C. J. J. Org. Chem. 2010, 75, 353.CrossRefPubMedGoogle Scholar
  3. 3.
    Pettit, G. R.; Numata, A.; Iwamoto, C.; Usami, Y.; Yamada, T.; Ohishi, H.; Cragg, G. M. J. Nat. Prod. 2006, 69, 323.CrossRefPubMedGoogle Scholar
  4. 4.
    Boonphong, S.; Puangsombat, P.; Baramee, A.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. J. Nat. Prod. 2007, 70, 795.CrossRefPubMedGoogle Scholar
  5. 5.
    Sarkhel, S.; Sharon, A.; Trivedi, V.; Maulik, P. R.; Singh, M. M.; Venugopalan, P.; Ray, S. Bioorg. Med. Chem. 2003, 11, 5025.CrossRefPubMedGoogle Scholar
  6. 6.
    Saidachary, G.; Prasad, K. V.; Divya, D.; Singh, A.; Ramesh, U.; Sridhar, B.; Raju, B. C. Eur. J. Med. Chem. 2014, 76, 460.CrossRefPubMedGoogle Scholar
  7. 7.
    Kahnberg, P.; Sterner, O. Tetrahedron 2001, 57, 7181.CrossRefGoogle Scholar
  8. 8.
    Lee, S. H.; Van, H. T. M.; Yang, S. H.; Lee, K. T.; Kwon, Y.; Cho, W. J. Bioorg. Med. Chem. Lett. 2009, 19, 2444.CrossRefGoogle Scholar
  9. 9.
    Liu, J. H.; Steigel, A.; Reininger, E.; Bauer, R. J. Nat. Prod. 2000, 63, 403.CrossRefPubMedGoogle Scholar
  10. 10.
    Staben, S. T.; Siu, M.; Goldsmith, R.; Olivero, A. G.; Do, S.; Burdick, D. J.; Heffron, T. P.; Dotson, J.; Sutherlin, D. P.; Zhu, B. Y.; Tsui, V.; Le, H.; Lee, L.; Lesnick, J.; Lewis, C.; Murray, J. M.; Nonomiya, J.; Pang, J.; Prior, W. W.; Salphati, L.; Rouge, L.; Sampath, D.; Sideris, S.; Wiesmann, C.; Wu, P. Bioorg. Med. Chem. Lett. 2011, 21, 4054.CrossRefPubMedGoogle Scholar
  11. 11.
    Kamboj, R. C.; Jindal, P.; Kumar, D.; Khullar, S.; Mandal, S. K. J. Photochem. Photobiol. A: Chem. 2014, 278, 31.CrossRefGoogle Scholar
  12. 12.
    Rao Mangina, N. S. V. M.; Suresh, S.; Sridhar, B.; Karunakar, G. V. Org. Biomol. Chem. 2016, 14, 3526.CrossRefGoogle Scholar
  13. 13.
    Rao Mangina, N. S. V. M.; Kadiyala, V.; Guduru, R.; Goutham, K.; Sridhar, B.; Karunakar, G. V. Org. Lett. 2017, 19, 282.CrossRefGoogle Scholar
  14. 14.
    Johnson, O. H.; Hamilton, C. S. J. Am. Chem. Soc. 1941, 63, 2864.CrossRefGoogle Scholar
  15. 15.
    LaMontagne, M. P.; Dagli, D.; Khan, M. S.; Blumbergs, P. J. Med. Chem. 1980, 23, 981.CrossRefPubMedGoogle Scholar
  16. 16.
    Urbina, J. M.; Cortés, J. C. G.; Palma, A.; López, S. N.; Zacchino, S. A.; Enriz, R. D.; Ribas, J. C.; Kouznetzov, V. V. Bioorg. Med. Chem. 2000, 8, 691.CrossRefPubMedGoogle Scholar
  17. 17.
    Jain, R.; Vaitilingam, B.; Nayyar, A.; Palde, P. B. Bioorg. Med. Chem. Lett. 2003, 13, 1051.CrossRefPubMedGoogle Scholar
  18. 18.
    Ulven, T.; Little, P. B.; Receveur, J. M.; Frimurer, T. M.; Rist, Ø.; Nørregaard, P. K.; Högberg, T. Bioorg. Med. Chem. Lett. 2006, 16, 1070.CrossRefPubMedGoogle Scholar
  19. 19.
    Li, A.; Huang, C.; Luo, C. W.; Li, L. J.; Yi, W. J.; Liu, T. W.; Chao, Z. S. Catal. Commun. 2017, 98, 13.CrossRefGoogle Scholar
  20. 20.
    Dolle, R. E.; Nelson, K. H. J. Comb. Chem. 1999, 1, 235.CrossRefPubMedGoogle Scholar
  21. 21.
    Gao, W. T.; Lin, G. H.; Li, Y.; Tao, X. Y.; Liu, R.; Sun, L. J. Beilstein J. Org. Chem. 2012, 8, 1849.Google Scholar
  22. 22.
    Gao, W. T.; Xing, X. D.; Li, Y.; Lan, S. Tetrahedron 2014, 70, 2180.CrossRefGoogle Scholar
  23. 23.
    Gao, W. T.; Fu, X. B.; Zhang, X. F.; Zhao, Y. N.; Wang, D. F.; Li, Y. Tetrahedron Lett. 2016, 57, 4145.CrossRefGoogle Scholar
  24. 24.
    Li, Y.; Li, K.; Gao, W. T. Chem. Heterocycl. Compd. 2016, 52, 200. [Khim. Geterotsikl. Soedin. 2016, 52, 200.]Google Scholar
  25. 25.
    Li, Y.; Wang, Y.; Zou, H. T. Mol. Diversity 2017, 21, 463.CrossRefGoogle Scholar
  26. 26.
    Jida, M.; Deprez, B. New J. Chem. 2012, 36, 869.Google Scholar
  27. 27.
    Ryabukhin, S. V.; Volochnyuk, D. M.; Plaskon, A. S.; Naumchik, V. S.; Tolmachev, A. A. Synthesis 2007, 1214.Google Scholar
  28. 28.
    Degtyarenko, A. S.; Tolmachev, A. A.; Volovenko, Y. M.; Tverdokhlebov, A. V. Synthesis 2007, 3891.Google Scholar
  29. 29.
    Xu, J.; Wang, D. L.; Liu, Z. P.; Zhang, K. X.; Ma, W.; Liu, B. Heterocycles 2017, 94, 1055.CrossRefGoogle Scholar
  30. 30.
    Nammalwar, B.; Murie, M.; Fortenberry, C.; Bunce, R. A. Tetrahedron Lett. 2014, 55, 3181.CrossRefGoogle Scholar
  31. 31.
    Eaton, P. E.; Carlson, G. R.; Lee, J. T. J. Org. Chem. 1973, 38, 4071.CrossRefGoogle Scholar
  32. 32.
    Meesala, R.; Nagarajan, R. Tetrahedron Lett. 2010, 51, 422.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Superfine ChemicalsBohai UniversityJinzhouChina

Personalised recommendations