Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 6, pp 625–629 | Cite as

Derivatives of Azidocinnamic Acid in the Synthesis of 2-Amino-4-Arylidene-1H-Imidazol-5(4H)-Ones

  • Alexander Yu. Smirnov
  • Nadezhda S. Baleeva
  • Snezhana O. Zaitseva
  • Konstantin S. Mineev
  • Mikhail S. Baranov
Article

A method for the synthesis of 2-amino-4-arylidene-1H-imidazol-5(4H)-ones is proposed based on the reaction of various aromatic isocyanates with phosphazenes derived from azidocinnamic acid amides. The spectral-luminescent properties of the obtained compounds were studied. The products were shown to possess the (Z)-configuration with the help of two-dimensional spectroscopy.

Keywords

imidazolones isocyanates phosphazenes aza-Wittig reaction chromophores heteronuclear spin-spin coupling constants 

Notes

The study was carried out with the financial support of the Grants Council of the President of the Russian Federation (grant MK-189.2017.3).

The work was carried out using the equipment of the Collective Use Center “Bioorganic” of the Russian Academy of Sciences, supported by the Russian Ministry of Education and Science (agreement identifier RFMEFI62117X0018).

References

  1. 1.
    Baleeva, N. S.; Baranov, M. S. Chem. Heterocycl. Compd. 2016, 52, 444. [Khim. Geterotsikl. Soedin. 2016, 52, 444.]Google Scholar
  2. 2.
    Baranov, M. S.; Lukyanov, K. A.; Yampolsky, I. V. Russ. J. Bioorg. Chem. 2013, 39, 223. [Bioorg. Khim. 2013, 39, 255.]Google Scholar
  3. 3.
    Ivashkin, P. E.; Yampolsky, I. V.; Lukyanov, K. A. Russ. J. Bioorg. Chem. 2009, 35, 652. [Bioorg. Khim. 2009, 39, 726.]Google Scholar
  4. 4.
    (a) Walker, C. L; Lukyanov, K. A.; Yampolsky, I. V.; Mishin, A. S.; Duraj-Thatte, A. M.; Bahareh, A.; Tolbert, L. M.; Solntsev, K. M. Curr. Opin. Chem. Biol. 2015, 27, 64. (b) Frizler, M.; Yampolsky, I. V.; Baranov, M. S.; Stirnberg, M.; Gütschow, M. Org. Biomol. Chem. 2013, 11, 5913.Google Scholar
  5. 5.
    (a) Szent-Gyorgyi, C.; Schmidt, B. F.; Schmidt, B. A.; Creeger, Y.; Fisher, G. W.; Zakel, K. L.; Adler, S.; Fitzpatrick, J. A. J.; Woolford, C. A.; Yan, Q.; Vasilev, K. V.; Berget, P. B.; Bruchez, MP; Jarvik, J. W.; Waggoner, A. Nat. Biotechnol. 2008, 26, 235. (b) Schoen, I.; Ries, J.; Klotzsch, E.; Ewers, H.; Vogel, V. Nano Lett. 2011, 11, 4008. (c) Plamont, M-A.; Billon-Denis, E.; Maurin, S.; Gauron, C.; Pimenta, F. M.; Specht, C. G.; Shi, J.; Quérard, J.; Pan, B.; Rossignol, J.; Moncoq, K.; Morellet, N.; Volovitch, M.; Lescop, E.; Triller, A.; Vriz, S.; Saux, T.; Jullien, L.; Gautier, A. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 497.Google Scholar
  6. 6.
    (a) Povarova, N. V.; Bozhanova, N. G.; Sarkisyan, K. S.; Gritcenko, R.; Baranov, M. S.; Yampolsky, I. V.; Lukyanov, K. A.; Mishin, A. S. J. Mater. Chem. C 2016, 4, 3036. (b) Filonov, G. S.; Moon, J. D.; Svensen, N.; Jaffrey, S. R. J. Am. Chem. Soc. 2014, 136, 16299. (c) Paige, J. S.; Wu, K. Y.; Jaffrey, S. R. Science 2011, 333, 642. (d) Baldridge, A.; Feng, S.; Chang, Y.-T.; Tolbert, L. M. ACS Comb. Sci. 2011, 13, 214.Google Scholar
  7. 7.
    Baranov, M. S.; Solntsev, K. M.; Lukyanov, K. A.; Yampolsky, I. V. Chem. Commun. 2013, 49, 5778.CrossRefGoogle Scholar
  8. 8.
    (a) Molina, P.; Alajarín, M.; Vidal, A. Tetrahedron 1989, 45, 4263. (b) Nishimura, Y.; Cho, H. Synlett 2015, 233.Google Scholar
  9. 9.
    Lukasik, E.; Wrobel, Z. Synlett 2014, 217.Google Scholar
  10. 10.
    Froyen, P. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 63, 283.CrossRefGoogle Scholar
  11. 11.
    (a) Hirota, S.; Kato, R.; Suzuki, M.; Soneta, Y.; Otani, T.; Saito, T. Eur. J. Org. Chem. 2008, 12, 2075. (b) Nagamatsu, K.; kiyoshi, E.; Ito, H.; Fujii, H.; Kakehi, A.; Abe, N. Heterocycles 2006, 69, 167.Google Scholar
  12. 12.
    (a) Molina, P.; Aller, E.; Lorenzo, A. Synlett 2003, 714. (b) Wang, H.; Guo, S.; Hu, Y.; Zeng, X.; Yang, G. Youji Huaxue 2015, 35, 1075. (c) Ding, M.; Zeng, G.; Wu, T. Synth. Commun. 2000, 30, 1599.Google Scholar
  13. 13.
    (a) Taylor, E.; Patel, M. J. Heterocycl. Chem. 1991, 28, 1857. (b) Sheng, H.; Chang, Z.; Chen, S. Chin. Chem. Lett. 2011, 22, 443.Google Scholar
  14. 14.
    (a) Li, H.; Xie, C.; Ding, M.; Liu, M.; Yang, G. Synlett 2007, 2280. (b) Heras, M.; Ventura, M.; Linden, A.; Mvillalgordo, J. Tetrahedron 2001, 57, 4371.Google Scholar
  15. 15.
    (a) Turos, G.; Csampai, A.; Lovasz, T.; Györfi, A.; Wamhoff, H.; Sohar, P. Eur. J. Org. Chem. 2002, 3801. (b) Yuan, J.; Fu, B.; Ding, M.; Yang, G. Eur. J. Org. Chem. 2006, 4170.Google Scholar
  16. 16.
    (a) Wu, D.; Yong, S.; Xiao-Peng, L. Gaodeng Xuexiao Huaxue Xuebao 2003, 24, 1424. (b) Ding, M.; Xu, Z.; Liu, Z.; Wu, T. Synth. Commun. 2001, 31, 1053. (c) Molina, P.; Tarraga, A.; Lidon, J. J. Chem. Soc., Perkin Trans. 1 1990, 1727.Google Scholar
  17. 17.
    Marek, K.; Kralik, L.; Sklenar, V. Tetrahedron Lett. 1997, 38, 665. 18. Kingsbury, C.; Draney, D.; Sopchik, A.; Rissler, W.; Durham, D. J. Org. Chem. 1976, 41, 3863.Google Scholar
  18. 18.
    Baleeva, N. S.; Myannik, K. A.; Yampolsky, I. V.; Baranov, M. S. Eur. J. Org. Chem. 2015, 5716.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alexander Yu. Smirnov
    • 1
  • Nadezhda S. Baleeva
    • 1
  • Snezhana O. Zaitseva
    • 1
  • Konstantin S. Mineev
    • 1
  • Mikhail S. Baranov
    • 1
    • 2
  1. 1.Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations