Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 6, pp 612–617 | Cite as

Heterocyclic analogs of 5,12-naphthacenequinone 15*. Synthesis of new anthra[2,3-b]thiophene-3(2)-carboxylic acids

  • Daria V. Andreeva
  • Yuri B. Sinkevich
  • Alexander S. Tikhomirov
  • Yury N. Luzikov
  • Alexander M. Korolev
  • Andrey E. Shchekotikhin
Article
  • 11 Downloads

Methods have been developed for the synthesis of anthra[2,3-b]thiophene-3(2)-carboxylic acids and their derivatives through modifications of 4,11-dibutoxy-3-methylanthra[2,3-b]thiophene-5,10-dione. A scheme involving methyl group transformations was proposed for the preparation of dibutoxyanthra[2,3-b]thiophene-3-carboxylic acid, including reactions of radical halogenation, hydrolysis, and oxidation of a 3-formyl derivative. 4,11-Dihydroxy-3-methylanthra[2,3-b]thiophene-2-carboxylic acid was synthesized from the appropriate carbonitrile, obtained by Rosenmund–von Braun reaction from 2-bromo-4,11-dibutoxy-3-methylanthra[2,3-b]-thiophene-5,10-dione.

Keywords

anthra[2,3-b]thiophene-3(2)-carboxylic acids anthra[2,3-b]thiophene-5,10-diones bromination cyanation dealkylation hydrolysis 

Notes

The study was performed with partial financial support from the Grants Council of the President of the Russian Federation for state support of young scientists in Russia (grant MK-2474.2018.3)

References

  1. 1.
    Tikhomirov, A. S.; Litvinova, V. A.; Luzikov, Y. N.; Korolev, A. M.; Sinkevich, Y. B.; Shchekotikhin, A. E. Chem. Heterocycl. Compd. 2017, 53, 1072. [Khim. Geterotsikl. Soedin. 2017, 53, 1072].CrossRefGoogle Scholar
  2. 2.
    Tikhomirov, A. S.; Shtil A. A.; Shchekotikhin, A. E. Recent Pat. Anti-Cancer Drug Discovery 2018, 13, 159.CrossRefGoogle Scholar
  3. 3.
    Shchekotikhin, A. E.; Dezhenkova, L. G.; Tsvetkov, V. B.; Luzikov, Y. N.; Volodina, Y. L.; Tatarskiy, V. V.; Kalinina, A. A.; Treshalin, M. I.; Treshalina, H. M.; Romanenko, V. I.; Kaluzhny, D. N.; Kubbutat, M.; Schols, D.; Pommier, D.; Shtil, A. A.; Preobrazhenskaya, M. N. Eur. J. Med. Chem. 2016, 112, 114.CrossRefGoogle Scholar
  4. 4.
    Treshalina, H. M.; Romanenko, V. I.; Kaluzhny, D. N.; Treshalin, M. I.; Nikitin, A. A.; Tikhomirov, A. S.; Shchekotikhin, A. E. Eur. J. Pharm. Sci. 2017, 109, 631.CrossRefGoogle Scholar
  5. 5.
    Tikhomirov, A. S.; Lin, C. -Y.; Volodina, Y. L.; Dezhenkova, L. G.; Tatarskiy, V. V.; Schols, D.; Shtil, A. A.; Kaur, P.; Chueh, P. J.; Shchekotikhin, A. E. Eur. J. Med. Chem. 2018, 148, 128.CrossRefGoogle Scholar
  6. 6.
    Shatrova, A. A.; Baranov, D. S.; Uvarov, M. N.; Kazantsev, M. S.; Glebov, E. M.; Fadeev, D. S.; Kulik, L. V. Z. Phys. Chem. (Leipzig) 2017, 231, 425.Google Scholar
  7. 7.
    He, P.; Tu, Z.; Zhao, G.; Zhen, Y.; Geng, H.; Yi, Y.; Wang, Z.; Zhang, H.; Xu, C.; Liu, J.; Lu, X.; Fu, X.; Zhao, Q.; Zhang, X.; Ji, D.; Jiang, L.; Dong, H.; Hu, W. Adv. Mater. 2015, 27, 825.CrossRefGoogle Scholar
  8. 8.
    Liau, W.-L.; Lee, T.-H.; Chen, J.-T.; Hsu, C.-S. J. Mater. Chem. C 2016, 4, 2284.CrossRefGoogle Scholar
  9. 9.
    Storzer, T.; Hinderhofer, A.; Zeiser, C.; Novák, J.; Fišer, Z.; Belova, V.; Reisz, B.; Maiti, S.; Duva, G.; Hallani, R. K.; Gerlach, A.; Anthony, J. E.; Schreiber, F. J. Phys. Chem. C 2017, 121, 21011.CrossRefGoogle Scholar
  10. 10.
    Sinkevich, Yu. B.; Shchekotikhin, A. E.; Luzikov, Yu. N.; Buyanov, V. N.; Kovalenko, L. V. Chem. Heterocycl. Compd. 2007, 43, 1252. [Khim. Geterotsikl. Soedin. 2007, 1478.]CrossRefGoogle Scholar
  11. 11.
    Dalcanale, E.; Montanari, F. J. Org. Chem. 1986, 51, 567.CrossRefGoogle Scholar
  12. 12.
    Lee, G. A.; Freedman, H. H. Tetrahedron Lett. 1976, 17, 1641.CrossRefGoogle Scholar
  13. 13.
    Stevens, R. V.; Chapman, K. T.; Stubbs, C. A.; Tam, W. W.; Albizati, K. F. Tetrahedron Lett. 1982, 23, 4647.CrossRefGoogle Scholar
  14. 14.
    Dodd, R. H.; Le Hyaric, M. Synthesis 1993, 295.Google Scholar
  15. 15.
    Webb, K. S.; Ruszkay, S. J. Tetrahedron 1998, 54, 401.CrossRefGoogle Scholar
  16. 16.
    Brown, H. C.; Imai, T.; Desai, M. C.; Singaram, B. J. Am. Chem. Soc 1985, 107, 4980.CrossRefGoogle Scholar
  17. 17.
    Ojima, I.; Kogure, T.; Yoda, Y. Org. Synth. Coll. 1990, 7, 417.Google Scholar
  18. 18.
    Tikhomirov, A. S.; Shchekotikhin, A. E.; Preobrazhenskaya, M. N. Chem. Heterocycl. Compd. 2014, 50, 171. [Khim. Geterotsikl. Soedin. 2014, 50, 193.]CrossRefGoogle Scholar
  19. 19.
    Dezhenkova, L. G.; Tikhomirov, A. S.; Shtil, А. А.; Shchekotikhin, A. E.; Volodina, Yu. L. RU patent 2631100, 2017.Google Scholar
  20. 20.
    Shchekotikhin, A. E.; Lusikov, Y. N.; Buyanov, V. N.; Preobrazhenskaya, M. N. Chem. Heterocycl. Compd. 2007, 43, 439. [Khim. Geterotsikl. Soedin. 2007, 538.]CrossRefGoogle Scholar
  21. 21.
    Shchekotikhin, A. E.; Luzikov, Y. N.; Buyanov, V. N.; Preobrazhenskaya, M. N. Chem. Heterocycl. Compd. 2006, 42, 1236. [Khim. Geterotsikl. Soedin. 2006, 1421.]CrossRefGoogle Scholar
  22. 22.
    Rogers, M. E.; Averill, B. A. J. Org. Chem. 1986, 51, 3308.CrossRefGoogle Scholar
  23. 23.
    Zanon, J.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 2890.CrossRefGoogle Scholar
  24. 24.
    Wen, Q.; Jin, J.; Zhang, L.; Luo, Y.; Lu, P.; Wang, Y. Tetrahedron Lett. 2014, 55, 1271.CrossRefGoogle Scholar
  25. 25.
    Brown, H. C.; Garg, C. P.; Liu, K.-T. J. Org. Chem. 1971, 36, 387.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Daria V. Andreeva
    • 1
    • 2
  • Yuri B. Sinkevich
    • 2
  • Alexander S. Tikhomirov
    • 1
    • 2
  • Yury N. Luzikov
    • 1
  • Alexander M. Korolev
    • 1
  • Andrey E. Shchekotikhin
    • 1
    • 2
  1. 1.Gause Institute of New AntibioticsMoscowRussia
  2. 2.D. Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations