Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 6, pp 584–586 | Cite as

Open image in new window Modern approaches for SO2 insertion in heterocyclic synthesis (microreview)

  • Krista Suta
  • Māris Turks
Article
  • 53 Downloads

The most recent advances in the synthesis of heterocyclic compounds via insertion of sulfur dioxide reported from 2015 to 2018 are summarized. Methods described here are organized in several sections depending on the source of SO2: sodium or potassium metabisulfite (M2S2O5), SO2 adducts with nitrogen-containing heterocycles DABSO and DMAP·SO2, ex situ formed SO2, and intramolecularly released SO2.

References

  1. 1.
    (a) Ahmad, I.; Shagufta Int. J. Pharm. Pharm. Sci. 2015, 7(3), 19. (b) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top Med. Chem. 2016, 16, 1200.Google Scholar
  2. 2.
    (a) Aïssa, C. J. Org. Chem. 2006, 71, 360. (b) Gui, J.; Zhou, Q.; Pan, C. M.; Yabe, Y.; Burns, A. C.; Collins, M. R.; Ornelas, M. A.; Ishihara, Y.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 4853. (c) Swenson, R. E.; Sowin, T. J.; Zhang, H. Q. J. Org. Chem. 2002, 67, 9182. (d) Alonso, D. A.; Nájera, C. Org. React. 2008, 72, 367.Google Scholar
  3. 3.
    (a) Gao, N.; Zhang, S. J. Appl. Polym. Sci. 2013, 128, 1. (b) Kakimoto, M..; Grunzinger, S. J.; Hayakawa, T. Polym. J. 2010, 42, 697.Google Scholar
  4. 4.
    Liu, N. W.; Liang, S.; Manolikakes, G. Synthesis 2016, 1939.Google Scholar
  5. 5.
    (a) Deeming, A. S.; Emmett, E. J.; Richards-Taylor, C. S.; Willis, M. C. Synthesis 2014, 2701. (b) Emmett, E. J.; Willis, M. C. Asian J. Org. Chem. 2015, 4, 602. (c) Liu, G.; Fan, C.; Wu, J. Org. Biomol. Chem. 2015, 13, 1592. (d) Bisseret, P.; Blanchard, N. Org. Biomol. Chem. 2013, 11, 5393.Google Scholar
  6. 6.
    Wang, M.; Chen, S.; Jiang, X. Org. Lett. 2017, 19, 4916.CrossRefPubMedGoogle Scholar
  7. 7.
    Dang, H. T.; Nguyen, V. T.; Nguyen, V. D.; Arman, H. D.; Larionov, O. V. Org. Biomol. Chem. 2018, 16, 3605.CrossRefPubMedGoogle Scholar
  8. 8.
    Konishi, H.; Tanaka, H.; Manabe, K. Org. Lett. 2017, 19, 1578.CrossRefPubMedGoogle Scholar
  9. 9.
    Woolven, H.; González-Rodríguez, C.; Marco, I.; Thompson, A. L.; Willis, M. C. Org. Lett. 2011, 13, 4876.CrossRefPubMedGoogle Scholar
  10. 10.
    Hofman, K.; Liu, N. W.; Manolikakes, G. Chem.–Eur. J. 2018, doi: 10.1002/chem.201705470.Google Scholar
  11. 11.
    Qiu, G.; Zhou, K.; Gao, L.; Wu, J. Org. Chem. Front. 2018, 5, 691.CrossRefGoogle Scholar
  12. 12.
    Zhang, J.; Zhang, F.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Chem. Commun. 2018, 3891.Google Scholar
  13. 13.
    Wang, A. F.; Hao, W. J.; Zhu, Y. L.; Li, G.; Zhou, P.; Tu, S. J.; Jiang, B. ACS Omega 2018, 3, 1482.CrossRefGoogle Scholar
  14. 14.
    Sun, D.; Yin, K.; Zhang, R. Chem. Commun. 2018, 1335.Google Scholar
  15. 15.
    Wang, Y.; Deng, L.; Zhou, J.; Wang, X.; Mei, H.; Han, J.; Pan, Y. Adv. Synth. Catal. 2018, 360, 1060.CrossRefGoogle Scholar
  16. 16.
    Yang, D.; Sun, P.; Wei, W.; Liu, F.; Zhang, H.; Wang, H. Chem.–Eur. J. 2018, 24, 4423.Google Scholar
  17. 17.
    Chen, C. C.; Waser, J. Org. Lett. 2015, 17, 736.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Martial, L.; Bischoff, L. Synlett 2015, 1225.Google Scholar
  19. 19.
    Laserna, V.; Martin, E.; Escudero-Adan, E. C.; Kleij, A. W. Adv. Synth. Catal. 2016, 358, 3832.CrossRefGoogle Scholar
  20. 20.
    Su, X.; Huang, H.; Hong, W.; Cui, J.; Yu, M.; Li, Y. Chem. Commun. 2017, 13324.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia

Personalised recommendations