A 3-hydroxyflavone derivative as fluorescence chemosensor for copper and zinc ions
- 16 Downloads
A 3-hydroxyflavone derivative as fluorescence chemosensor for copper and zinc ions has been synthesized. Its recognition properties for copper and zinc ions in aqueous solution were investigated based on UV-vis absorption and fluorescence spectra change. The compound exhibits color change from colorless to yellow and quenching of green fluorescence in the presence of copper ions in aqueous solution due to coordination reaction. In turn, the addition of zinc ions induces the color change from colorless to green and fluorescence enhancement of the compound. The complex ratios between the sensor molecule and copper(zinc) ions are 1:1 and 1:2, respectively, based on the Job's plots and in situ mass spectra. Thus, this compound can selectively recognize copper and zinc ions, and the recognition also can be observed by naked eye.
Keywords
copper ion hydroxyflavone zinc ion chemosensorNotes
This work is supported by Shandong wall materials innovation and building energy saving research and development project (2012QG007), Shandong science and technology project of department of housing and urban rural construction (2013RK031), Shandong science and technology project of department of housing and urban rural construction (2016).
Supplementary material
References
- 1.Jia, J.; Wu, A.; Luan, S. J. Colloid. Surf., A 2014, 449, 1.CrossRefGoogle Scholar
- 2.Wang, F.; Lu, X.; Li, X.-Y. J. Hazard. Mater. 2016, 308, 75.CrossRefGoogle Scholar
- 3.Zhou, Y.; Tang, L.; Zeng, G.; Zhang, C.; Xie, X. Sens. Actuators, B 2016, 223, 280.CrossRefGoogle Scholar
- 4.Wei, Z.; Sandron, S.; Townsend, A. T.; Nesterenko, P. N.; Paull, B. Talanta 2015, 135, 155.CrossRefGoogle Scholar
- 5.Li, Y.; Hu, Y.; Zhao, Y.; Shi, G.; Deng, L.; Hou, Y. B.; Qu, L. T. Adv. Mater. 2011, 23, 776.CrossRefGoogle Scholar
- 6.Huang, D. W.; Niu, C.; Ruan, M.; Wang, X.; Zeng, G.; Deng, C. Environ. Sci. Technol. 2013, 47, 4392.CrossRefGoogle Scholar
- 7.Yao, J.; Zhang, K.; Zhu, H.; Ma, F.; Sun, M.; Yu, H.; Sun, J.; Wang, S. Anal. Chem. 2013, 85, 6461.CrossRefGoogle Scholar
- 8.Wang, M.; Yan, F.; Zou, Y.; Chen, L.; Yang, N.; Zhou, X. Sens. Actuators, B 2014, 192, 512.CrossRefGoogle Scholar
- 9.Zhang, G.; Li, H.; Bi, S.; Song, L.; Lu, Y.; Zhang, L.; Yu, J.; Wang, L. Analyst 2013, 138, 6163.CrossRefGoogle Scholar
- 10.Hapuarachchige, S.; Bryant, B. K.; Arterburn, J. B. Chem. Heterocycl. Compd. 2014, 50, 254. [Khim. Geterotsikl. Soedin. 2014, 280.]CrossRefGoogle Scholar
- 11.Yang, Y. M.; Zhao, Q.; Feng, W.; Li, F. Chem. Rev. 2013, 113, 192.CrossRefGoogle Scholar
- 12.Liu, S. J.; Zhou, N.; Chen, Z.; Wei, H.; Zhu, Y.; Guo, S.; Zhao, Q. Opt. Lett. 2017, 42, 13.CrossRefGoogle Scholar
- 13.Yuan, M.-S.; Wang, Q.; Wang, W.; Wang, D.-E.; Wang, J.; Wang, J. Analyst 2014, 139, 1541.CrossRefGoogle Scholar
- 14.Yu, X.; Wang, K.; Cao, D.; Wu, Q.; Guan, R.; Xu, Y.; Sun, Y.; Liu, Z. Chem. Heterocycl. Compd. 2017, 53, 42. [Khim. Geterotsikl. Soedin. 2017, 53, 42.]CrossRefGoogle Scholar
- 15.Ha, C. H. H.; Fatima, A.; Gaurav, A. Adv. Bioinf. 2015, 1.Google Scholar
- 16.Jin, X.; Liu, C.; Wang, X.; Huang, H.; Zhang, X.; Zhu, H. Sens. Actuators, B 2015, 216, 141.CrossRefGoogle Scholar
- 17.Ghosh, D.; Ahamed, G.; Batuta, S.; Begum, N. A.; Mandal, D. J. Photochem. Photobiol., A 2016, 328, 77.CrossRefGoogle Scholar
- 18.Chen, S.; Hou, P.; Zhou, B.; Song, X.; Wu, J.; Zhang, H.; Foley, J. W. RSC Adv. 2013, 3, 11543.CrossRefGoogle Scholar
- 19.Feng, W.; Wang, Y.; Chen, S.; Wang, C.; Wang, S.; Li, S.; Li, H.; Zhou, G.; Zhang, J. Dyes Pigm. 2016, 131, 145.CrossRefGoogle Scholar
- 20.Wu, Q.; Wang, K.; Wang, Z.; Sun, Y.; Cao, D.; Liu, Z.; Guan, R.; Zhao, S.; Yu, X. Talanta 2018, 181, 118.CrossRefGoogle Scholar
- 21.Gunduz, S.; Goren, A. C.; Ozturk, T. Org. Lett. 2012, 14, 1576.CrossRefGoogle Scholar
- 22.Wu, Q.; Wang, Z.; Li, J.; Qiu, S.; Cao, D.; Liu, Z.; Guan, R. RSC Adv. 2016, 6, 72698.CrossRefGoogle Scholar
- 23.Ashok, D.; Ravi, S.; Lakshmi, B. V.; Ganesh, A. J. Serb. Chem. Soc. 2015, 80, 1361.CrossRefGoogle Scholar
- 24.Zhu, M.; Yuan, M.; Liu, X.; Xu, J.; Lv, J.; Huang, C.; Liu, H.; Li, Y.; Wang, S.; Zhu, D. Org. Lett. 2008, 10, 1481.CrossRefGoogle Scholar
- 25.Isaad, J.; Achari, A. E. Tetrahedron 2011, 67, 5678.CrossRefGoogle Scholar
- 26.Hibbert, D. B.; Thordarson, P. Chem. Commun. 2016, 52, 12792.CrossRefGoogle Scholar
- 27.Ulatowski, F.; Dąbrowa, K.; Balakier, T.; Jurczak, J. J. Org. Chem. 2016, 81, 1746.CrossRefGoogle Scholar
- 28.Wang, F.; Wang, L.; Chen, X.; Yoon, J. Chem. Soc. Rev. 2014, 43, 4312.CrossRefGoogle Scholar
- 29.Li, Z.; Lou, X.; Yu, H.; Li, Z.; Qin, J. Macromolecules 2008, 41, 7433.CrossRefGoogle Scholar
- 30.Anbu, S.; Ravishankaran, R.; Guedes da Silva, M. F. C.; Karande, A. A.; Pombeiro, A. J. L. Inorg. Chem. 2014, 53, 6655.CrossRefGoogle Scholar
- 31.Grazul, M.; Budzisz, E. Coord. Chem. Rev. 2009, 253, 2588.CrossRefGoogle Scholar