Advertisement

Genome projects in invasion biology

  • Michael A. McCartneyEmail author
  • Sophie Mallez
  • Daryl M. Gohl
Review Article
  • 101 Downloads

Abstract

Advances in sequencing and informatics and rapidly falling costs have made genome sequencing projects far more accessible to researchers in all of the life sciences, including invasion biology. A complete genome is now the most efficient first step towards identifying and characterizing candidate genes that control invasiveness. At the genomic level, fundamental problems in invasion science can be pursued with great precision and rigor. This includes reconstruction of the history of invasions, analysis of demographic dynamics within colonizing populations, and study of the rapid, adaptive evolution of invasiveness. This update documents new developments in the emerging field of invasion genomics. Our review found that of 100 of the world’s most damaging invasive species, assembled genomes are available for 27—a minority but still a considerable resource. This calls for a larger investment in genomics, but also highlights publicly available genomic resources for invasive species that remain underutilized. We examine the value of reference genomes. We conclude that while some technologies (e.g. genotyping by Next Generation Sequencing) can be applied without reference genomes or with fragmented ones, investments in high quality genome assemblies will provide considerable long-term benefits in invasion and conservation genomics research programs.

Keywords

Invasion genomics Invasive species Population genomics Genome assembly 

Notes

Acknowledgements

We thank Benjamin Auch and Kenneth Beckman in the University of Minnesota Genomics Center, Adam Herman, Thomas Kono, Kevin Silverstein, and Ying Zhang of the Minnesota Supercomputing Institute and many other collaborators for their exceptional contributions to the zebra mussel genome project that inspired this review. Funding was provided by grants from the Minnesota Environment and Natural Resources Trust Fund and the Minnesota Aquatic Invasive Species Research Center, and from private donations.

References

  1. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195CrossRefPubMedGoogle Scholar
  2. Allendorf FW (2017) Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol 26:420–430CrossRefPubMedGoogle Scholar
  3. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30CrossRefGoogle Scholar
  4. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709CrossRefPubMedGoogle Scholar
  5. Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations, 2nd edn. Wiley-Blackwell, ChichesterGoogle Scholar
  6. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ascunce MS, Yang C-C, Oakey J, Calcaterra L, Wu W-J, Shih C-J, Goudet J, Ross KG, Shoemaker D (2011) Global invasion history of the fire ant Solenopsis invicta. Science 331:1066–1068CrossRefPubMedGoogle Scholar
  8. Asplen MK, Anfora G, Biondi A et al (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494CrossRefGoogle Scholar
  9. Baker HG, Stebbins GL (eds) (1965) The evolution of colonizing species. Academic Press, New YorkGoogle Scholar
  10. Bana NA, Nyiri A, Nagy J et al (2018) The red deer Cervus elaphus genome CerEla1.0: sequencing, annotating, genes, and chromosomes. Mol Genet Genom 293:665–684CrossRefGoogle Scholar
  11. Barker BS, Andonian K, Swope SM, Luster DG, Dlugosch KM (2017) Population genomic analyses reveal a history of range expansion and trait evolution across the native and invaded range of yellow starthistle (Centaurea solstitialis). Mol Ecol 26:1131–1147CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barrett SCH (2017) Foundations of invasion genetics: The Baker and Stebbins legacy. In: Barrett SCH, Colautti RI, Dlugosch KM, Rieseberg LH (eds) Invasion genetics: the Baker and Stebbins legacy. Wiley, Chichester, pp 1–20Google Scholar
  13. Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623–630CrossRefPubMedGoogle Scholar
  14. Berthelot C, Brunet F, Chalopin D et al (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 5:3657CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bickhart DM, Rosen BD, Koren S et al (2017) Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet 49:643–650CrossRefPubMedPubMedCentralGoogle Scholar
  16. Black WC IV, Baer CF, Antolin MF, DuTeau NM (2001) Population genomics: genome-wide sampling of insect populations. Annu Rev Entomol 46:441–469CrossRefPubMedGoogle Scholar
  17. Blattner FR, Plunkett G 3rd, Bloch CA et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462CrossRefPubMedGoogle Scholar
  18. Bohme U, Otto TD, Cotton JA et al (2018) Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals. Genome Res 28:547–560CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bourne SD, Hudson J, Holman LE, Rius M (2018) Marine invasion genomics: revealing ecological and evolutionary consequences of biological invasions. In: Rajora OP (ed) Population genomics: concepts, approaches and applications. Springer, Switzerland, pp 1–36Google Scholar
  20. Burri R, Nater A, Kawakami T et al (2015) Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res 25:1656–1665CrossRefPubMedPubMedCentralGoogle Scholar
  21. Burt A (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc R Soc of Lond Ser B 270:921–928CrossRefGoogle Scholar
  22. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J (2013) Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31:1119–1125CrossRefPubMedPubMedCentralGoogle Scholar
  23. Carneiro M, Rubin C-J, Di Palma F et al (2014) Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345:1074–1079CrossRefPubMedPubMedCentralGoogle Scholar
  24. Catchen J, Bassham S, Wilson T, Currey M, O’Brien C, Yeates Q, Cresko WA (2013a) The population structure and recent colonization history of Oregon threespine stickleback determined using restriction-site associated DNA-sequencing. Mol Ecol 22:2864–2883CrossRefPubMedPubMedCentralGoogle Scholar
  25. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013b) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140CrossRefPubMedPubMedCentralGoogle Scholar
  26. Champer J, Buchman A, Akbari OS (2016) Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet 17:146–159CrossRefPubMedGoogle Scholar
  27. Chen X-G, Jiang X, Gu J et al (2015) Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. Proc Natl Acad Sci 112:E5907–E5915CrossRefPubMedGoogle Scholar
  28. Chen W, Hasegawa DK, Kaur N et al (2016) The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol 14:110CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA (2015) Biological invasions, climate change and genomics. Evol Appl 8:23–46CrossRefPubMedGoogle Scholar
  30. Colautti RI, MacIsaac HJ (2004) A neutral terminology to define “invasive” species. Divers Distrib 10:135–141CrossRefGoogle Scholar
  31. Cresko WA, Amores A, Wilson C, Murphy J, Currey M, Phillips P, Bell MA, Kimmel CB, Postlethwait JH (2004) Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proc Natl Acad Sci USA 101:6050–6055CrossRefPubMedGoogle Scholar
  32. Cristescu ME (2015) Genetic reconstructions of invasion history. Mol Ecol 24:2212–2225CrossRefPubMedGoogle Scholar
  33. Darling JA, Bagley MJ, Roman JOE, Tepolt CK, Geller JB (2008) Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus. Mol Ecol 17:4992–5007CrossRefPubMedGoogle Scholar
  34. Darling JA, Tsai YH, Blakeslee AM, Roman J (2014) Are genes faster than crabs? Mitochondrial introgression exceeds larval dispersal during population expansion of the invasive crab Carcinus maenas. R Soc Open Sci 1:140202CrossRefPubMedPubMedCentralGoogle Scholar
  35. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510CrossRefPubMedGoogle Scholar
  36. de Koning APJ, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384CrossRefPubMedPubMedCentralGoogle Scholar
  37. Dlugosch KM, Parker IM (2007) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449CrossRefPubMedGoogle Scholar
  38. Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD (2015) The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol 24:2095–2111CrossRefPubMedGoogle Scholar
  39. Dobzhansky T (1965) “Wild” and”domestic” species of Drosophila. In: Baker AM, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York, pp 533–546Google Scholar
  40. Drury DW, Dapper AL, Siniard DJ, Zentner GE, Wade MJ (2017) CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations. Sci Adv 3:e1601910CrossRefPubMedPubMedCentralGoogle Scholar
  41. Drysdale RA, Crosby MA, FlyBase C (2005) FlyBase: genes and gene models. Nucleic Acids Res 33:D390–D395CrossRefPubMedGoogle Scholar
  42. Edwards RJ, Tuipulotu DE, Amos TG et al (2018) Draft genome assembly of the invasive cane toad, Rhinella marina. Gigascience 7:1–13CrossRefGoogle Scholar
  43. Elleouet JS, Aitken SN (2018) Exploring Approximate Bayesian Computation for inferring recent demographic history with genomic markers in nonmodel species. Mol Ecol Resour 18:525–540CrossRefPubMedGoogle Scholar
  44. Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WE, Holzapfel CM (2010) Resolving postglacial phylogeography using high-throughput sequencing. Proc Natl Acad Sci USA 107:16196–16200CrossRefPubMedGoogle Scholar
  45. Engelbrecht J, Duong TA, Berg NVD (2017) New microsatellite markers for population studies of Phytophthora cinnamomi, an important global pathogen. Sci Rep 7:17631CrossRefPubMedPubMedCentralGoogle Scholar
  46. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130CrossRefPubMedGoogle Scholar
  47. Estoup A, Ravigné V, Hufbauer R, Vitalis R, Gautier M, Facon B (2016) Is there a genetic paradox of biological invasion? Annu Rev Ecol Evol Syst 47:51–72CrossRefGoogle Scholar
  48. Farrer RA, Weinert LA, Bielby J et al (2011) Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc Natl Acad Sci USA 108:18732–18736CrossRefPubMedGoogle Scholar
  49. Fleischmann RD, Adams MD, White O et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512CrossRefPubMedGoogle Scholar
  50. Frankham R (2004) Resolving the genetic paradox in invasive species. Heredity 94:385CrossRefGoogle Scholar
  51. Gantz VM, Bier E (2015) The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348:442–444CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA (2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci USA 112:E6736CrossRefPubMedGoogle Scholar
  53. Genomes Consortium (2016) 1135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–491CrossRefGoogle Scholar
  54. Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274:546CrossRefPubMedGoogle Scholar
  55. Goodswen SJ, Kennedy PJ, Ellis JT (2012) Evaluating high-throughput ab initio gene finders to discover proteins encoded in eukaryotic pathogen genomes missed by laboratory techniques. PLoS ONE 7:e50609CrossRefPubMedPubMedCentralGoogle Scholar
  56. Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC, McCombie WR (2015) Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 25:1750–1756CrossRefPubMedPubMedCentralGoogle Scholar
  57. Gouin A, Bretaudeau A, Nam K et al (2017) Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci Rep 7:11816CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hall MR, Kocot KM, Baughman KW et al (2017) The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature 544:231–234CrossRefPubMedGoogle Scholar
  59. Hammond SA, Warren RL, Vandervalk BP et al (2017) The North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA. Nat Commun 8:1433CrossRefPubMedPubMedCentralGoogle Scholar
  60. Henson J, Tischler G, Ning Z (2012) Next-generation sequencing and large genome assemblies. Pharmacogenomics 13:901–915CrossRefPubMedPubMedCentralGoogle Scholar
  61. Higashino A, Sakate R, Kameoka Y, Takahashi I, Hirata M, Tanuma R, Masui T, Yasutomi Y, Osada N (2012) Whole-genome sequencing and analysis of the Malaysian cynomolgus macaque (Macaca fascicularis) genome. Genome Biol 13:R58CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hoffberg SL, Troendle NJ, Glenn TC, Mahmud O, Louha S, Chalopin D, Bennetzen JL, Mauricio R (2018) A high-quality reference genome for the invasive mosquitofish Gambusia affinis using a Chicago Library. G3 (Bethesda) 8:1855–1861CrossRefGoogle Scholar
  63. Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862CrossRefPubMedPubMedCentralGoogle Scholar
  64. Holt RA, Subramanian GM, Halpern A et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149CrossRefPubMedGoogle Scholar
  65. Horvath DP, Patel S, Doğramaci M et al (2018) Gene space and transcriptome assemblies of leafy spurge (Euphorbia esula) identify promoter sequences, repetitive elements, high-quality markers, and a full-length chloroplast genome. Weed Sci 66:355–367CrossRefGoogle Scholar
  66. Hufbauer RA, Facon B, Ravigne V, Turgeon J, Foucaud J, Lee CE, Rey O, Estoup A (2012) Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol Appl 5:89–101CrossRefPubMedGoogle Scholar
  67. Jain M, Olsen HE, Paten B, Akeson M (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17:239CrossRefPubMedPubMedCentralGoogle Scholar
  68. Jarvis ED (2016) Perspectives from the avian phylogenomics project: questions that can be answered with sequencing all genomes of a vertebrate class. Annu Rev Anim Biosci 4:45–59CrossRefPubMedGoogle Scholar
  69. Jeffery NW, DiBacco C, Van Wyngaarden M et al (2017) RAD sequencing reveals genomewide divergence between independent invasions of the European green crab (Carcinus maenas) in the Northwest Atlantic. Ecol Evol 7:2513–2524CrossRefPubMedPubMedCentralGoogle Scholar
  70. Joneson S, Stajich JE, Shiu S-H, Rosenblum EB (2011) Genomic transition to pathogenicity in chytrid fungi. PLoS Pathol 7:e1002338CrossRefGoogle Scholar
  71. Kardos M, Taylor HR, Ellegren H, Luikart G, Allendorf FW (2016) Genomics advances the study of inbreeding depression in the wild. Evol Appl 9:1205–1218CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kardos M, Åkesson M, Fountain T et al (2017a) Genomic consequences of intensive inbreeding in an isolated wolf population. Nat Ecol Evol 2:124–131CrossRefPubMedGoogle Scholar
  73. Kardos M, Qvarnstrom A, Ellegren H (2017b) Inferring individual inbreeding and demographic history from segments of identity by descent in Ficedula flycatcher genome sequences. Genetics 205:1319–1334CrossRefPubMedPubMedCentralGoogle Scholar
  74. Kingan SB, Heaton H, Cudini J, Lambert CC, Baybayan P, Galvin BD, Durbin R, Korlach J, Lawniczak MKN (2019) A high-quality de novo genome assembly from a single mosquito using PacBio Ssquencing. Genes (Basel) 10:1–11CrossRefGoogle Scholar
  75. Kingsford C, Schatz MC, Pop M (2010) Assembly complexity of prokaryotic genomes using short reads. BMC Bioinformatics 11:21CrossRefPubMedPubMedCentralGoogle Scholar
  76. Koren S, Schatz MC, Walenz BP et al (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30:693–700CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kotsakiozi P, Richardson JB, Pichler V, Favia G, Martins AJ, Urbanelli S, Armbruster PA, Caccone A (2017) Population genomics of the Asian tiger mosquito, Aedes albopictus: insights into the recent worldwide invasion. Ecol Evol 7:10143–10157CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, Nolan T, Crisanti A (2018) A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol 36:1062–1066CrossRefPubMedGoogle Scholar
  79. Lack JB, Cardeno CM, Crepeau MW, Taylor W, Corbett-Detig RB, Stevens KA, Langley CH, Pool JE (2015) The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population. Genetics 199:1229–1241CrossRefPubMedPubMedCentralGoogle Scholar
  80. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  81. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391CrossRefGoogle Scholar
  82. Li M, Chen L, Tian S et al (2017) Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Res 27:865–874CrossRefPubMedPubMedCentralGoogle Scholar
  83. Liu C, Jiang F, Wang H et al (2018) The genome of the golden apple snail Pomacea canaliculata provides insight into stress tolerance and invasive adaptation. GigaScience 7:giy101PubMedCentralGoogle Scholar
  84. Lombaert E, Guillemaud T, Cornuet J-M, Malausa T, Facon B, Estoup A (2010) Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS ONE 5:e9743CrossRefPubMedPubMedCentralGoogle Scholar
  85. Lombaert E, Guillemaud T, Lundgren J et al (2014) Complementarity of statistical treatments to reconstruct worldwide routes of invasion: the case of the Asian ladybird Harmonia axyridis. Mol Ecol 23:5979–5997CrossRefPubMedGoogle Scholar
  86. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Aukland, New Zealand, p 12Google Scholar
  87. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981CrossRefPubMedGoogle Scholar
  88. Makkonen J, Vesterbacka A, Martin F, Jussila J, Dieguez-Uribeondo J, Kortet R, Kokko H (2016) Mitochondrial genomes and comparative genomics of Aphanomyces astaci and Aphanomyces invadans. Sci Rep 6:36089CrossRefPubMedPubMedCentralGoogle Scholar
  89. Manni M, Guglielmino CR, Scolari F et al (2017) Genetic evidence for a worldwide chaotic dispersion pattern of the arbovirus vector, Aedes albopictus. PLoS Negl Trop Dis 11:e0005332CrossRefPubMedPubMedCentralGoogle Scholar
  90. Maselko M, Heinsch SC, Chacón JM, Harcombe WR, Smanski MJ (2017) Engineering species-like barriers to sexual reproduction. Nat Commun 8:883CrossRefPubMedPubMedCentralGoogle Scholar
  91. Mastretta-Yanes A, Arrigo N, Alvarez N, Jorgensen TH, Pinero D, Emerson BC (2015) Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Mol Ecol Resour 15:28–41CrossRefPubMedGoogle Scholar
  92. Matthews BJ, Dudchenko O, Kingan SB et al (2018) Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 563:501–507CrossRefPubMedPubMedCentralGoogle Scholar
  93. McCartney MA, Auch B, Kono T et al (2019) The genome of the zebra mussel, Dreissena polymorpha: a resource for invasive species research. bioRxiv.  https://doi.org/10.1101/696732v1 CrossRefGoogle Scholar
  94. McKenna DD, Scully ED, Pauchet Y et al (2016) Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. BMC Genome Biol 17:227CrossRefGoogle Scholar
  95. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46CrossRefPubMedGoogle Scholar
  96. Miller N, Estoup A, Toepfer S et al (2005) Multiple transatlantic introductions of the western corn rootworm. Science 310:992CrossRefPubMedGoogle Scholar
  97. Minardi D, Studholme DJ, van der Giezen M, Pretto T, Oidtmann B (2018) New genotyping method for the causative agent of crayfish plague (Aphanomyces astaci) based on whole genome data. J Invertebr Pathol 156:6–13CrossRefPubMedGoogle Scholar
  98. Moll KM, Zhou P, Ramaraj T et al (2017) Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula. BMC Genom 18:578CrossRefGoogle Scholar
  99. Murgarella M, Puiu D, Novoa B, Figueras A, Posada D, Canchaya C (2016) A first insight into the genome of the filter-feeder mussel Mytilus galloprovincialis. PLoS ONE 11:e0151561CrossRefPubMedPubMedCentralGoogle Scholar
  100. Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22:2841–2847CrossRefPubMedPubMedCentralGoogle Scholar
  101. NCBI (2019a) [National Center for Biotechnology Information, National Institutes of Health, US National Library of Medicine], Genome resource. https://www.ncbi.nlm.nih.gov/genome/
  102. NCBI (2019b) List of BioProjects, filtered for data type “Genome sequencing and assembly”. https://www.ncbi.nlm.nih.gov/bioproject/browse/
  103. NCBI (2019c) Gasterosteus aculeatus reference genome. https://www.ncbi.nlm.nih.gov/assembly/GCA_000180675.1/#/s
  104. NCBI (2019d) Homo sapiens genome assemblies from 2001 to present: https://www.ncbi.nlm.nih.gov/assembly/?term=Homo+sapiens
  105. Nene V, Wortman JR, Lawson D et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718CrossRefPubMedGoogle Scholar
  106. Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12:443–451CrossRefPubMedPubMedCentralGoogle Scholar
  107. Noble C, Adlam B, Church GM, Esvelt KM, Nowak MA (2018) Current CRISPR gene drive systems are likely to be highly invasive in wild populations. eLife 7:e33423CrossRefPubMedPubMedCentralGoogle Scholar
  108. Nowoshilow S, Schloissnig S, Fei J-F et al (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554:50–55CrossRefPubMedGoogle Scholar
  109. Ometto L, Cestaro A, Ramasamy S et al (2013) Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 5:745–757CrossRefPubMedPubMedCentralGoogle Scholar
  110. Ostrander EA, Wang G-D, Larson G et al (2019) Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health. Natl Sci Rev.  https://doi.org/10.1093/nsr/nwz049/5437695 CrossRefGoogle Scholar
  111. Padeken J, Zeller P, Gasser SM (2015) Repeat DNA in genome organization and stability. Curr Opin Genet Dev 31:12–19CrossRefPubMedGoogle Scholar
  112. Pelissie B, Crossley MS, Cohen ZP, Schoville SD (2018) Rapid evolution in insect pests: the importance of space and time in population genomics studies. Curr Opin Insect Sci 26:8–16CrossRefPubMedGoogle Scholar
  113. Peona V, Weissensteiner MH, Suh A (2018) How complete are “complete” genome assemblies?—an avian perspective. Mol Ecol Resources 18:1188–1195CrossRefGoogle Scholar
  114. Ramasamy S, Ometto L, Crava CM et al (2016) The evolution of olfactory gene families in Drosophila and the genomic basis of chemical-ecological adaptation in Drosophila suzukii. Genome Biol Evol 8:2297–2311CrossRefPubMedPubMedCentralGoogle Scholar
  115. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinf 13:278–289CrossRefGoogle Scholar
  116. Ricciardi A, Cohen J (2006) The invasiveness of an introduced species does not predict its impact. Biol Invas 9:309–315CrossRefGoogle Scholar
  117. Rius M, Bourne S, Hornsby HG, Chapman MA (2015) Applications of next-generation sequencing to the study of biological invasions. Curr Zool 61:488–504CrossRefGoogle Scholar
  118. Roberts RJ, Church DM, Goodstadt L et al (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7:e1000112CrossRefGoogle Scholar
  119. Rode NO, Estoup A, Bourguet D, Courtier-Orgogozo V, Débarre F (2019) Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks. Conserv Genet 20:671–690CrossRefGoogle Scholar
  120. Roman J (2006) Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proc R Soc Lond Ser B 273:2453–2459CrossRefGoogle Scholar
  121. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464CrossRefPubMedGoogle Scholar
  122. Ryan JF, Pang K, Schnitzler CE et al (2013) The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342:1242592CrossRefPubMedPubMedCentralGoogle Scholar
  123. Salzberg SL (2019) Next-generation genome annotation: we still struggle to get it right. Genome Biol 20:92CrossRefPubMedPubMedCentralGoogle Scholar
  124. Sard N, Robinson J, Kanefsky J, Herbst S, Scribner K (2019) Coalescent models characterize sources and demographic history of recent round goby colonization of Great Lakes and inland waters. Evol Appl 12:1034–1049CrossRefPubMedPubMedCentralGoogle Scholar
  125. Sax DF, Stachowicz JJ, Brown JH et al (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471CrossRefPubMedGoogle Scholar
  126. Schatz MC, Delcher AL, Salzberg SL (2010) Assembly of large genomes using second-generation sequencing. Genome Res 20:1165–1173CrossRefPubMedPubMedCentralGoogle Scholar
  127. Schwartz DC, Li X, Hernandez LI, Ramnarain SP, Huff EJ, Wang YK (1993) Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262:110–114CrossRefPubMedGoogle Scholar
  128. Seo JS, Rhie A, Kim J et al (2016) De novo assembly and phasing of a Korean human genome. Nature 538:243–247CrossRefPubMedGoogle Scholar
  129. Sharon D, Tilgner H, Grubert F, Snyder M (2013) A single-molecule long-read survey of the human transcriptome. Nat Biotechnol 31:1009–1014CrossRefPubMedPubMedCentralGoogle Scholar
  130. Sherman CDH, Lotterhos KE, Richardson MF, Tepolt CK, Rollins LA, Palumbi SR, Miller AD (2016) What are we missing about marine invasions? Filling in the gaps with evolutionary genomics. Mar Biol 163:198CrossRefGoogle Scholar
  131. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212CrossRefPubMedGoogle Scholar
  132. Smith CD, Zimin A, Holt C et al (2011) Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proc Natl Acad Sci USA 108:5673–5678CrossRefPubMedGoogle Scholar
  133. Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:W465–W467CrossRefPubMedPubMedCentralGoogle Scholar
  134. Studholme DJ, McDougal RL, Sambles C, Hansen E, Hardy G, Grant M, Ganley RJ, Williams NM (2016) Genome sequences of six Phytophthora species associated with forests in New Zealand. Genom Data 7:54–56CrossRefPubMedGoogle Scholar
  135. Tamazian G, Simonov S, Dobrynin P et al (2014) Annotated features of domestic cat–Felis catus genome. GigaScience 3:13CrossRefPubMedPubMedCentralGoogle Scholar
  136. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRefGoogle Scholar
  137. Weissensteiner MH, Pang AWC, Bunikis I, Hoijer I, Vinnere-Petterson O, Suh A, Wolf JBW (2017) Combination of short-read, long-read, and optical mapping assemblies reveals large-scale tandem repeat arrays with population genetic implications. Genome Res 27:697–708CrossRefPubMedPubMedCentralGoogle Scholar
  138. Wolf JB, Ellegren H (2017) Making sense of genomic islands of differentiation in light of speciation. Nat Rev Genet 18:87–100CrossRefPubMedGoogle Scholar
  139. Xu P, Zhang X, Wang X et al (2014) Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet 46:1212–1219CrossRefPubMedGoogle Scholar
  140. Zhang G, Fang X, Guo X et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54CrossRefPubMedGoogle Scholar
  141. Zheng GXY, Lau BT, Schnall-Levin M et al (2016) Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol 34:303–311CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Minnesota Aquatic Invasive Species Research Center and Dept. of Fisheries, Wildlife and Conservation BiologyUniversity of MinnesotaSt. PaulUSA
  2. 2.University of Minnesota Genomics CenterMinneapolisUSA
  3. 3.Department of Genetics, Cell Biology, and Developmental BiologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations