Genetic structure and diversity of the Iberian populations of the freshwater blenny Salaria fluviatilis (Asso, 1801) and its conservation implications

  • Laura Méndez
  • Anabel PerdicesEmail author
  • Annie Machordom
Research Article


The freshwater blenny Salaria fluviatilis has a circum-Mediterranean distribution, but it is restricted to highly specific habitats and is particularly susceptible to human disturbances, leading to the decline of Iberian populations of the species, resulting in their classification as Vulnerable. The aim of this study is to evaluate the genetic diversity and structure of the Iberian populations of S. fluviatilis to facilitate the design of robust conservation programs for the species. Potential barriers among populations and recent bottlenecks were also identified. Eleven Iberian populations (N = 337) of S. fluviatilis were genotyped for twelve polymorphic microsatellites. Our results showed strong genetic structure among Iberian populations, clustering them into four groups: north-eastern Iberian group (Fluviá, Segre, Matarraña and Cabriel rivers and Albufera Lagoon), southern Iberian group (Verde, Guadaíza and Guadalmansa rivers), Atlantic group (Zújar River and Ruidera Lakes) and Bañolas Lake (north-eastern Spain). Genetic diversity was higher in the north-eastern Iberian group (average observed heterozygosity Ho = 0.5 and number of alleles Na = 4.9) compared with in the southern Iberian group (average Ho = 0.42 and Na = 2.3), although the lowest observed heterozygosity was found in the Atlantic group (Ruidera Lakes, Ho = 0.324 ± 0.106). The analyses also revealed a recent bottleneck in the southern Iberian group. Our results not only provide essential information for future conservation plans of the Iberian populations of S. fluviatilis but also for the maintenance of the species’ genetic pool in general, for which the four clusters identified in this study should be considered.


Fragmented populations Iberian Peninsula Microsatellites Peripheral populations Salaria (Blennius) fluviatilis 



We are grateful to F. Alonso, A. Pradillo, P. Risueño, D. Vinyoles, J. M. Ortíz, Q. Pou and J. Vukic for their assistance with the field work. S. Rubio provided most of the Southern samples (Centro de Cría Los Villares, Agencia Medio Ambiente y Agua, Junta de Andalucía). We thank P. Ochoa and R. García for their help in the laboratory, V. López and G. Sánchez-Montes for their assistance in the analyses, and V. González Cascón for her assistance in maps reconstruction. Thanks to Melinda Modrell who conscientiously revised the language.


Funding was provided by Ministerio de Economía y Competitividad (ES) (Grant No. CTM2014-57949-R).


  1. Abdul-Muneer PM (2014) Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet Res Int 2014:1–11. CrossRefGoogle Scholar
  2. Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N et al (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58:403–414. CrossRefGoogle Scholar
  3. Almada VC, Robalo JI, Levy A, Freyhof J, Bernardi G, Doadrio I (2009) Phylogenetic analysis of peri-Mediterranean blennies of the genus Salaria: molecular insights on the colonization of freshwaters. Mol Phylogenet Evol 52:424–431. CrossRefGoogle Scholar
  4. Aparicio E, Vargas MJ, Olmo JM, De Sostoa A (2000) Decline of native freshwater fishes in a Mediterranean watershed on the Iberian Peninsula: a quantitative assessment. Environ Biol Fish 59:11–19. CrossRefGoogle Scholar
  5. Belaiba E, Marrone F, Vecchioni L, Bahri-Sfar L, Arculeo M (2019) An exhaustive phylogeny of the combtooth blenny genus Salaria (Pisces, Blenniidae) shows introgressive hybridization and lack of reciprocal mtDNA monophyly between the marine species Salaria basilisca and Salaria pavo. Mol Phylogenet Evol 135:210–221. CrossRefGoogle Scholar
  6. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, FranceGoogle Scholar
  7. Blanco JC, González JL (1992) Libro rojo de los vertebrados de España. Colección Técnica, ICONA, MadridGoogle Scholar
  8. Booy G, Hendriks RJ, Smulders MJ, Van Groenendael JM, Vosman B (2000) Genetic diversity and the survival of populations. Plant Biol 2:379–395. CrossRefGoogle Scholar
  9. Boulangé FG (1997) Population genetics of the endangered freshwater river blenny (Lipophrys fluviatilis, Asso, 1801): an evaluation by microsatellite DNA markers and mt-DNA analysis. Master dissertation, University of East Anglia, Norwich, UKGoogle Scholar
  10. Briggs JC (2010) A plethora of blennies. Environ Biol Fish 2:89–92. CrossRefGoogle Scholar
  11. Cabral MJ, Almeida J, Almeida PR, Dellinger T, Ferrand de Almeida N, Oliveira ME, et al (eds) (2005) Livro Vermelho dos Vertebrados de Portugal. Instituto da Conservação da Natureza, Lisboa, Portugal.
  12. Calvo JP, Daams R, Morales J, López-Martínez N, Agustí J, Anadón P et al (1993) Up-to-date Spanish continental Neogene synthesis and paleoclimatic interpretation. Rev Soc Geol Esp 6:29–40Google Scholar
  13. Clavero M, Blanco-Garrido F, Prenda J (2004) Fish fauna in Iberian Mediterranean river basins: biodiversity, introduced species and damming impacts. Aquat Conserv 14:575–585. CrossRefGoogle Scholar
  14. Collares-Pereira MJ, Cowx IG, Ribeiro F, Rodrigues JA, Rogado L (2000) Threats imposed by water resource development schemes on the conservation of endangered fish species in the Guadiana River Basin in Portugal. Fish Manag Ecol 7:167–178. CrossRefGoogle Scholar
  15. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014Google Scholar
  16. Côté IM, Vinyoles D, Reynolds JD, Doadrio I, Perdices A (1999) Potential impacts of gravel extraction on Spanish populations of river blennies Salaria fluviatilis (Pisces, Blenniidae). Biol Conserv 87:359–367. CrossRefGoogle Scholar
  17. CPE. Carta Piscícola Española (2019) Accessed 24 May 2019
  18. Darwall W, Smith K, Allen D, Seddon M, Reid GM, Clausnitzer V, Kalkman VJ (2009) Freshwater biodiversity: a hidden resource under threat. In: Vié JC, Hilton-Taylor C, Stuart SN (eds) Wildlife in a changing world—an analysis of the 2008 IUCN Red List of Threatened. IUCN, Gland, pp 42–53Google Scholar
  19. DeWoody JA, Avise JC (2000) Microsatellite variation in marine freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473. CrossRefGoogle Scholar
  20. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. PNAS 91:3166–3170. CrossRefGoogle Scholar
  21. Doadrio I (2001) Atlas y libro rojo de los peces continentales de España. Dirección General de Conservación de la Naturaleza, Ministerio De Medio Ambiente, MadridGoogle Scholar
  22. Doadrio I, Carmona JA, Machordom A (2002) Haplotype diversity and phylogenetic relationships among the Iberian barbels (Barbus, Cyprinidae) reveal two evolutionary lineages. J Hered 93:140–147. CrossRefGoogle Scholar
  23. Doadrio I, Perea S, Yahyaoui A (2011) Morphological and molecular analyses of freshwater blennids: a new species of the genus Salaria, Forsskål 1775 (Actinopterygii, Blennidae) in Morocco. Graellsia 67:151–173. CrossRefGoogle Scholar
  24. Earl DA, Von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361. CrossRefGoogle Scholar
  25. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188. CrossRefGoogle Scholar
  26. Elvira B (1995) Native and exotic freshwater fishes in Spanish river basins. Freshw Biol 33:103–108. CrossRefGoogle Scholar
  27. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. CrossRefGoogle Scholar
  28. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491Google Scholar
  29. Ferreira D, Souza-Shibatta L, Shibatta O, Sofia S, Carlsson J, Dias JHP, Makrakis S, Makrakis MC (2017) Genetic structure and diversity of migratory freshwater fish in a fragmented Neotropical river system. Rev Fish Biol Fisher 27:209–231. CrossRefGoogle Scholar
  30. Ferrito V, Tigano C (1996) Decline of Aphanius fasciatus (Cyprinodontidae) and Salaria fluviatilis (Blenniidae) populations in freshwater of eastern Sicily. Ichthyol Explor Freshw 7:181–184Google Scholar
  31. Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Freeman MC, Vinyoles D, Grossman GD, De Sostoa A (1990) Microhabitat use by Blennius fluviatilis in the Río Matarraña, Spain. Freshw Biol 24:335–345. CrossRefGoogle Scholar
  33. Geiger MR, Herder F, Monaghan MT, Almada V, Barbieri R, Bariche M et al (2014) Spatial heterogeinity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes. Mol Ecol Resour 14:1210–1221. CrossRefGoogle Scholar
  34. Gil F, Faria C, Almada VC (2010) An efficient technique for the captive breeding of an endangered freshwater fish Salaria fluviatilis (Pisces: Blenniidae), with a description of its ontogeny. J World Aquacult Soc 41(S1):49–56. CrossRefGoogle Scholar
  35. Hedrick PW (2004) Recent developments in conservation genetics. For Ecol Manag 197:3–19. CrossRefGoogle Scholar
  36. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638. CrossRefGoogle Scholar
  37. Hernández R, Lacomba RT, Uviñas N, Oltra R (2000) Distribution pattern of river blennies in the Júcar River basin (eastern Spain). J Fish Biol 57:250–254. CrossRefGoogle Scholar
  38. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  39. Hundt PJ, Iglésias SP, Hoey AS, Simons AM (2014) A multilocus molecular phylogeny of combtooth blennies (Percomorpha: Blennioidei: Blenniidae): Multiple invasions of intertidal habitats. Mol Phylogenet Evol 70:47–56. CrossRefGoogle Scholar
  40. Johannesson K, Andre C (2006) Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Mol Ecol 15:2013–2029. CrossRefGoogle Scholar
  41. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94CrossRefGoogle Scholar
  42. Kottelat M (2004) Salaria economidisi, a new species of freshwater fish from Lake Trichonis, Greece, with comments on variation in S. fluviatilis (Teleostei: Blenniidae). Rev Suisse Zool 111:121–137CrossRefGoogle Scholar
  43. Kottelat M, Freyhof J (2007) Handbook of the European Freshwater Fishes. Publications Kottelat, CornolGoogle Scholar
  44. Laporte M (2012) Histoire évolutive et phylogéographie de la colonisation des eaux douces par une espèce d’origine marine, la blennie fluviatile (Salaria fluviatilis). Doctoral dissertation, Université Montpellier, Montpellier, FranceGoogle Scholar
  45. Laporte M, Magnan P, Justy F, Tougard C, Berrebi P (2012) Isolation of ten microsatellite markers using a pyrosequencing procedure and cross-priming in the Salaria genus. Conserv Genet Resour 4:151–154. CrossRefGoogle Scholar
  46. Laporte M, Bertolo A, Berrebi P, Magnan P (2014) Detecting anthropogenic effects on a vulnerable species, the freshwater blenny (Salaria fluviatilis): the importance of considering key ecological variables. Ecol Indic 36:386–391. CrossRefGoogle Scholar
  47. Laporte M, Leblois R, Coulon A, Bonhomme F, Magnan P, Berrebi P (2015) Genetic structure of a vulnerable species, the freshwater blenny (Salaria fluviatilis). Conserv Genet 16:571–581. CrossRefGoogle Scholar
  48. Laporte M, Perrier C, Magnan P, Berrebi P (2016) Genetic evidence of recent migration among isolated-by-sea populations of the freshwater blenny (Salaria fluviatilis). Conserv Genet 17:389–399. CrossRefGoogle Scholar
  49. Laporte M, Berrebi P, Claude J, Vinyoles D, Pou-Rovira Q, Raymond JC, Magnan P (2018) The ecology of sexual dimorphism in size and shape of the freshwater blenny Salaria fluviatilis. Curr Zoo 64:183–191. Google Scholar
  50. Lemopoulos A, Prokkola JM, Uusi-Heikkilä S, Vasemägi A, Huusko A, Hyvärinen P et al (2019) Comparing RADseq and microsatellites for estimating genetic diversity and relatedness—implications for brown trout conservation. Ecol Evol 9:2106–2120. Google Scholar
  51. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998a) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247. CrossRefGoogle Scholar
  52. Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998b) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol 7:963–974. CrossRefGoogle Scholar
  53. Luque L, Zazo C, Recio JM, Dueñas MA, Goy JL, Lario J et al (1999) Evolución sedimentaria de la laguna de la Janda (Cádiz) durante el Holoceno. Cuaternario y Geomorfología 13:43–50Google Scholar
  54. Maceda-Veiga A (2013) Towards the conservation of freshwater fish: Iberian Rivers as an example of threats and management practices. Rev Fish Biol Fisher 23:1–22. CrossRefGoogle Scholar
  55. Maceda-Veiga A, De Sostoa A (2011) Observational evidence of the sensitivity of some fish species to environmental stressors in Mediterranean rivers. Ecol Indic 11:311–317. CrossRefGoogle Scholar
  56. Machordom A, Suárez J, Almodóvar A, Bautista JM (2000) Mitochondrial haplotype variation and phylogeography of Iberian brown trout populations. Mol Ecol 9:1325–1338. CrossRefGoogle Scholar
  57. Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190. CrossRefGoogle Scholar
  58. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220Google Scholar
  59. Meirmans PG (2006) Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60:2399–2402. CrossRefGoogle Scholar
  60. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18. CrossRefGoogle Scholar
  61. Neat FC, Lengkeek W, Westerbeek EP, Laarhoven B, Videler JJ (2003) Behavioural and morphological differences between lake and river populations of Salaria fluviatilis. J Fish Biol 63:374–387. CrossRefGoogle Scholar
  62. Pais J, Cunha PP, Pereira D, Legoinha P, Dias R, Moura D et al (2012) The Paleogene and Neogene of western Iberia (Portugal): a Cenozoic record in the European Atlantic domain. A Cenozoic record in the European Atlantic domain. Springer Briefs in Earth Sciences. Springer, Berlin, pp 1–138. Google Scholar
  63. Pandey M, Rajora OP (2012) Genetic diversity and differentiation of core vs. peripheral populations of eastern white cedar, Thuja occidentalis (Cupressaceae). Am J Bot 99:690–699. CrossRefGoogle Scholar
  64. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. CrossRefGoogle Scholar
  65. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. CrossRefGoogle Scholar
  66. Perdices A, Doadrio I, Côté IM, Machordom A, Economidis P, Reynolds JD (2000) Genetic divergence and origin of Mediterranean populations of the river blenny Salaria fluviatilis (Teleostei: Blenniidae). Copeia 2000:723–731.;2 CrossRefGoogle Scholar
  67. Perea S, Garzón P, González JL, Almada VC, Pereira AM, Doadrio I (2011) New data on Spanish autochthonous species of freshwater fish. Graellsia 67:91–102. CrossRefGoogle Scholar
  68. Piry S, Luikart G, Cornuet JM (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90(4):502–503. CrossRefGoogle Scholar
  69. Plaut I (1998) Comparison of salinity tolerance and osmoregulation in two closely related species of blennies from different habitats. Fish Physiol Biochem 19(2):181–188. CrossRefGoogle Scholar
  70. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  71. Quirós C, Vinyoles D (2016) Streamflow reduction induces early parental care in Salaria fluviatilis (Asso, 1801) males. J Appl Ichthyol 32:198–203. CrossRefGoogle Scholar
  72. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  73. Raymond M, Rousset F (1995) GENEPOP 1.2: population genetics software for exact tests and ecumenicism. J Hered 86:248–249. CrossRefGoogle Scholar
  74. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228Google Scholar
  75. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. CrossRefGoogle Scholar
  76. RStudio (2016) RStudio: integrated development environment for R. RStudio Inc., Boston, MA.
  77. Sanjur OI, Carmona JA, Doadrio I (2003) Evolutionary and biogeographical patterns within Iberian populations of the genus Squalius inferred from molecular data. Mol Phylogenet Evol 29:20–30. CrossRefGoogle Scholar
  78. Tortonese E (1975) Fauna d’Italia XI. Osteichthyes, 2. Calderini, Bologna, ItalyGoogle Scholar
  79. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Resour 4:535–538. CrossRefGoogle Scholar
  80. Vecchioni L, Marrone F, Belaiba E, Tiralongo F, Bahri-Sfar L, Arculeo M (2019) The DNA barcoding of Mediterranean combtooth blennies suggests paraphyly of some taxa (Perciformes, Blenniidae). J Fish Biol 94:339–344. CrossRefGoogle Scholar
  81. Vinyoles D, De Sostoa A (2007) Life-history traits of the endangered river blenny Salaria fluviatilis (Asso) and their implications for conservation. J Fish Biol 70:1088–1108. CrossRefGoogle Scholar
  82. Vucetich JA, Waite TA (2003) Spatial patterns of demography and genetic processes across the species’ range: null hypotheses for landscape conservation genetics. Conserv Genet 4:639–645. CrossRefGoogle Scholar
  83. Zander CD (1972) Beiträge zur Ökologie und Biologie von Blenniidae (Pisces) des Mittelmeeres. Helgol Meeresunters 23:193–231. CrossRefGoogle Scholar
  84. Zardoya R, Doadrio I (1998) Phylogenetic relationships of Iberian cyprinids: systematic and biogeographical implications. Proc R Soc B 265:1365–1372. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  2. 2.Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias Naturales (MNCN-CSIC)MadridSpain

Personalised recommendations