Genetic variability and population structure of chamois in Greece (Rupicapra rupicapra balcanica)

  • Haritakis Papaioannou
  • Margarita Fernández
  • Trinidad Pérez
  • Ana DomínguezEmail author
Short Communication


Balkan chamois (Rupicapra rupicapra balcanica) is the southernmost subspecies within the distribution of the genus in Europe. In Greece, which is its marginal area of distribution, the population presents a fragmented pattern. This is the first study that investigates genetic variability and structure of Greek chamois. We collected samples from the wider Pindus mountain range, Mount Olympus, the Rhodope mountains and from the North-Northwestern mountains. Individuals were screened for mitochondrial (mt) sequences, cytochrome b (cytb) and control region (CR), and 18 microsatellite loci. Only one haplotype of cytb was observed. Sequences of the CR showed extensive variability grouping into three differentiated clades, one of them including specimens of the subspecies asiatica and caucasica. The GenBank haplotypes of balcanica from the Dinarides form a different clade. There is differentiation among geographical areas both for the CR as well as for microsatellites. In particular, the Olympus population is clearly distinct from the rest and shows low diversity. This differentiation can be related to recent isolation and small population size more than to a singular long evolutionary history, given that the haplotypes present there are shared by the Pindus populations. The chamois in Greece harbor an outstanding amount of variability within the species R. rupicapra and hence merit the implementation of special conservation measures. We propose actions to prevent further fragmentation in the wider area of Pindus and the North-Northwestern mountains. For the isolated populations of Olympus and the Rhodopes, conservation must focus on actions to maintain a viable population size.


Rupicapra rupicapra balcanica Microsatellites mtDNA Population structure Balkans Conservation 



We thank Sara de Albornoz and Victoria Coupe for the correction and improvement of our English. This work was funded by grant CGL2007-64315 from the Spanish Ministerio de Educación y Ciencia (FEDER support included). Special thanks to Ass. Prof V. Kati for her contribution to the MS writing, to Rhodope National Park Management Body and to the members of Balkan Chamois Society for their support in samples’ collection as well as to the Greek Ministry of Environment and Energy (Department of Wild Life and Game) for providing the relative license for this study.

Supplementary material

10592_2019_1177_MOESM1_ESM.xls (42 kb)
Supplementary material 1 (XLS 42 kb)
10592_2019_1177_MOESM2_ESM.xls (28 kb)
Supplementary material 2 (XLS 28 kb)


  1. Alexandri P, Triantafyllidis A, Papakostas S, Chatzinikos E, Platis P, Papageorgiou N, Larson G, Abatzopoulos TJ, Triantaphyllidis C (2012) Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. J Biogeogr 39:713–723CrossRefGoogle Scholar
  2. Bonin A, Belllemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273CrossRefGoogle Scholar
  3. Corlatti L, Lorenzini R, Lovari S (2011) The conservation of the chamois Rupicapra spp. Mamm Rev 41:163–174CrossRefGoogle Scholar
  4. Crestanello B, Pecchioli E, Vernesi C, Mona S, Martínková N, Janiga M, Hauffe HC, Bertorelle G (2009) The genetic impact of translocations and habitat fragmentation in chamois (Rupicapra) spp. J Hered 100:691–708CrossRefGoogle Scholar
  5. Earl DA, VonHoldt B (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:1–3CrossRefGoogle Scholar
  6. Frankham R, Briscoe DA, Ballou JD (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. Goudet J (1995) FSTAT (Version 1.2): a Computer program to calculate F-statistics. J Hered 86:485–486CrossRefGoogle Scholar
  8. Koller O (1929) Das Vorkommen von Rupicapra rupicapra auf dem Berge Olymp (Griechenland). Mammologische Mitteilun II 3:46Google Scholar
  9. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191CrossRefGoogle Scholar
  10. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  11. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefGoogle Scholar
  12. Markov G, Zhelev P, Ben Slimen H, Suchentrunk F (2016) Population genetic data pertinent to the conservation of Bulgarian chamois (Rupicapra rupicapra balcanica). Conserv Genet 17:155–164CrossRefGoogle Scholar
  13. Miller CR, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366Google Scholar
  14. Papaioannou H (2015) Current status and conservation management of Balkan chamois (R.r. balcanica) in Greece. In: Antonucci A, Di Domenico G (eds) Chamois international congress. Lama dei Peligni, Majella National Park, Italy, pp 111–122Google Scholar
  15. Papaioannou H (2016) The Balkan Chamois (Rupicapra rupicapra balcanica Bolkay, 1925) in Greece. Phd Thesis. In: Department of Environmental and Natural Resources, p. 264. University of Patras, Patras, GreeceGoogle Scholar
  16. Papaioannou H, Kati V (2007) Current status of the Balkan Chamois (Rupicapra rupicapra balcanica) in Greece: implications for conservation. Belg J Zool 137:33–39Google Scholar
  17. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539CrossRefGoogle Scholar
  18. Pérez T, Albornoz J, Domínguez A (2002) Phylogeography of chamois (Rupicapra spp.) inferred from microsatellites. Mol Phyl Evol 25:524–534CrossRefGoogle Scholar
  19. Pérez T, Fernández M, Hammer SE, Domínguez A (2017) Multilocus intron trees reveal extensive male-biased homogenization of ancient populations of Chamois (Rupicapra spp.) across Europe during late Pleistocene. PLOS One 12: e0170392CrossRefGoogle Scholar
  20. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  21. Randi E, Alves PC, Carranza J, Milosevic-Zlatanovic S, Sfougaris A, Mucci N (2004) Phylogeography of roe deer (Capreolus capreolus) populations: the effects of historical genetic subdivisions and recent nonequilibrium dynamics. Mol Ecol 13:3071–3083CrossRefGoogle Scholar
  22. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenism. J Hered 86:248–249CrossRefGoogle Scholar
  23. R-Core-Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  24. Rodríguez F, Hammer S, Perez T, Suchentrunk F, Lorenzini R, Michallet J, Martinkova N, Albornoz J, Domínguez A (2009) Cytochrome b phylogeography of chamois (Rupicapra spp.). Population contractions, expansions and hybridizations governed the diversification of the genus. J Hered 100:47–55CrossRefGoogle Scholar
  25. Rodríguez F, Perez T, Hammer SE, Albornoz J, Domínguez A (2010) Integrating phylogeographic patterns of microsatellite and mtDNA divergence to infer the evolutionary history of chamois (genus Rupicapra). BMC Evol Biol 10:222CrossRefGoogle Scholar
  26. Soglia D, Rossi L, Cauvin E, Citterio C, Ferroglio E, Maione S, Meneguz PG, Spalenza V, Rasero R, Sacchi P (2010) Population genetic structure of Alpine chamois (Rupicapra r. rupicapra) in the Italian Alps. Eur J Wildl Res 56:845–854CrossRefGoogle Scholar
  27. Šprem N, Buzan E (2016) The genetic impact of chamois management in the dinarides. J Wildlife Manage 80:783–793CrossRefGoogle Scholar
  28. Valière N (2002) Gimlet: a computer program for analyzing genetic individual identification data. Mol Ecol Notes 2:377–379Google Scholar
  29. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Biología Funcional (Genética), Facultad de Medicina 6ª Planta, Universidad de OviedoOviedoSpain
  2. 2.Balkan Chamois SocietyPapingo IoanninaGreece

Personalised recommendations