Advertisement

Molecular data exclude current hybridization between iguanas Conolophus marthae and C. subcristatus on Wolf Volcano (Galápagos Islands)

  • Livia Di Giambattista
  • Arianna Fulvo
  • Anna Fabiani
  • Jessica Bonanni
  • Jorge E. Carrión
  • Gabriele Gentile
Research Article
  • 24 Downloads

Abstract

Natural hybridization may influence population fitness and responsiveness to natural selection, in particular in oceanic island systems. In previous studies, interspecific hybridization was detected between the Galápagos iguana species Amblyrhynchus cristatus and Conolophus subcristatus. Further, possible hybridization was also suggested to occur between C. subcristatus and C. marthae at Wolf Volcano on Isabela Island. In this work, we investigated the level of hybridization between C. subcristatus and C. marthae using a large set of microsatellite markers. Results indicated strong differentiation between species and, while we cannot rule out hybridization in the past, there is no evidence of ongoing hybridization between C. marthae and C. subcristatus. These findings have great importance for the design of management actions and conservation plans, in particular for the purposes of a head start program. However, because potential for hybridization may change under different environmental and demographic conditions, genetic characterization of newly marked individuals of C. marthae and C. subcristatus in Wolf Volcano should not be interrupted.

Keywords

Hybridization Introgression Reproductive isolation mechanisms Pink Iguana 

Notes

Acknowledgements

We gratefully thank the park rangers of the Galápagos National Park for their invaluable support and friendship. We thank Michel Milinkovitch for kindly providing data. We thank Philip Hedrick and Mark Welch for their valuable criticism. This work is in the frame of a long term partnership between the University Tor Vergata and the Galápagos National Park Directorate, aimed at conservation of Galápagos iguanas. This work was supported by the Mohamed bin Zayed Species Conservation Fund with a grant to GG (Project No. 12254183; https://www.speciesconservation.org/case-studies-projects/galapagos-pink-land-iguana/4183).

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

Animal manipulation and blood sampling were performed according to a protocol that minimized animal stress, in accordance with the European Community guidelines and with the approval of the Galápagos National Park Directorate. Samples were exported and imported under the CITES permits 101/BG and IT/IM/2015/MCE/01711.

Supplementary material

10592_2018_1114_MOESM1_ESM.pdf (443 kb)
Supplementary material 1 (PDF 442 KB)
10592_2018_1114_MOESM2_ESM.xlsx (59 kb)
Supplementary material 2 (XLSX 59 KB)

References

  1. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622CrossRefGoogle Scholar
  2. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229PubMedPubMedCentralGoogle Scholar
  3. Armstrong DP, Seddon PJ (2008) Directions in reintroduction biology. Trends Ecol Evol 23:20–25CrossRefGoogle Scholar
  4. Arnold ML (2006) Evolution through genetic exchange. Oxford University Press, LondonGoogle Scholar
  5. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, Logiciel sous windows tm pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000. Université de Montpellier II, Montpellier, FranceGoogle Scholar
  6. Breuil M, Day M, Knapp CR (2010) Iguana delicatissima. In: The IUCN Red List of threatened species 2010, e.T10800A3217854Google Scholar
  7. Burke JM, Arnold ML (2001) Genetics and the fitness of hybrids. Annu Rev Genet 35:31–52CrossRefGoogle Scholar
  8. Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623CrossRefGoogle Scholar
  9. Chapius MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefGoogle Scholar
  10. Dąbrowski MJ, Pilot M, Kruczyk M, Żmihorski M, Umer HM, Gliwicz J (2014) Reliability assessment of null allele detection: inconsistencies between and within different methods. Mol Ecol Resour 14:361–373CrossRefGoogle Scholar
  11. Di Giambattista L (2016) Microevolutionary processes and population structure of Galápagos iguanas. Ph.D Thesis. University of Rome Tor Vergata, Rome, ItalyGoogle Scholar
  12. Dittrich-Reed DR, Fitzpatrick BM (2013) Transgressive hybrids as hopeful monsters. Evol Biol 40:1–6CrossRefGoogle Scholar
  13. Dubois A (2006) Species introductions and reintroductions, faunistic and genetic pollution: some provocative thoughts. Alytes 24:147–164Google Scholar
  14. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a Website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  16. Fabiani A, Trucchi E, Rosa S, Marquez C, Snell HL, Snell HM et al (2011) Conservation of Galápagos land iguanas: genetic monitoring and predictions of a long-term program on the island of Santa Cruz. Anim Conserv 14:419–429CrossRefGoogle Scholar
  17. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  18. Fitzpatrick BM, Shaffer HB (2007) Hybrid vigor between native and introduced salamanders raises new challenges for conservation. Proc Nat Acad Sci USA 104:15793–15798CrossRefGoogle Scholar
  19. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  20. Frankham R, Ballou JD, Briscoe DA (2009) An introduction to conservation genetics, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  21. Gabirot M, Lopez P, Martin J (2012) Differences in chemical signal may promote reproductive isolation and cryptic speciation between Iberian wall lizard populations. Int J Evol Biol 2012:1–13CrossRefGoogle Scholar
  22. Gentile G (2012) Conolophus marthae. The IUCN Red List of Threatened Species 2012:e.T174472A1414375.  https://doi.org/10.2305/IUCN.UK.2012-1.RLTS.T174472A1414375.en CrossRefGoogle Scholar
  23. Gentile G, Snell HL (2009) Conolophus marthae sp. nov. (Squamata, Iguanidae), a new species of land iguana from the Galápagos archipelago. Zootaxa 2201:1–10Google Scholar
  24. Gentile G, Fabiani A, Marquez C, Snell HL, Snell HM, Tapia W et al (2009) An overlooked pink species of land iguanas in the Galápagos. Proc Nat Acad Sci USA 106:507–511CrossRefGoogle Scholar
  25. Gentile G, Marquez C, Tapia W, Izurieta A (2016) Conservation of a new flagship species: the Galápagos pink land iguana (Conolophus marthae Gentile and Snell, 2009. In: Angelici F (ed) Problematic wildlife, a cross-disciplinary approach. Springer, Cham, pp 315–336Google Scholar
  26. Glaubitz JC (2004) CONVERT: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310CrossRefGoogle Scholar
  27. Grant PR, Grant BR (2016) Introgressive hybridization and natural selection in Darwin’s finches. Biol J Linn Soc 117:812–822CrossRefGoogle Scholar
  28. Grant PR, Grant BR, Petren K (2005) Hybridization in the recent past. Am Nat 166:56–67CrossRefGoogle Scholar
  29. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638CrossRefGoogle Scholar
  30. Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol 22:4606–4618CrossRefGoogle Scholar
  31. Henrich T, Kalbe M (2016) The role of prezygotic isolation mechanisms in the divergence of two parasite species. BMC Evol Biol 16:245CrossRefGoogle Scholar
  32. Hoskin CJ, Higgie M, McDonald KR, Moritz C (2005) Reinforcement drives rapid allopatric speciation. Nature 437:1353–1356CrossRefGoogle Scholar
  33. Jančuchová-Lásková J, Landová E, Frynta D (2015) Are genetically distinct lizard able to hybridize? A review. Curr Zool 61:155–180CrossRefGoogle Scholar
  34. Kisel Y, Barraclough TG (2010) Speciation has a spatial scale that depends on level of gene flow. Am Nat 175:316–334CrossRefGoogle Scholar
  35. Kleindorfer S, O’Connor JA, Dudaniec RY, Myers SA, Robertson J, Sulloway FJ (2014) Species collapse via hybridization in Darwin’s tree finches. Am Nat 183:325–341CrossRefGoogle Scholar
  36. Knapp C, Breuil M, Rodrigues C, Iverson J (eds) (2014) Lesser antillean Iguana, Iguana delicatissima: conservation action plan, 2014–2016. IUCN SSC Iguana Specialist Group, GlandGoogle Scholar
  37. Macleod A, Rodríguez A, Vences M, Orozco-Terwengel P, García C, Trillmich F, Gentile G, Caccone A, Quezada G, Steinfartz S (2015) Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana. Proc R Soc B 282:20150425CrossRefGoogle Scholar
  38. Malone CL, Wheeler T, Taylor JF, Davis SK (2000) Phylogeography of the Caribbean rock iguana (Cyclura): implications for conservation and insights on the biogeographic history of the West Indies. Mol Phylogenet Evol 17:269–279CrossRefGoogle Scholar
  39. Mebert K, Jagar T, Grželj JR, Cafuta V, Luiselli L, Ostanek E et al (2015) The dynamic of coexistence: habitat sharing versus segregation patterns among three sympatric montane vipers. Biol J Linn Soc 2015:1–13Google Scholar
  40. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Res 11:5–18CrossRefGoogle Scholar
  41. Moss JB, Welch ME, Burton FJ, Vallee MV, Houlcroft EW, Laaser T, Gerber GP (2018) First evidence for crossbreeding between invasive Iguana iguana and the native rock iguana (Genus Cyclura) on Little Cayman Island. Biol Invasions 20:817–823CrossRefGoogle Scholar
  42. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  43. Onorati M, Sancesario G, Pastore D, Bernardini S, Carrion J, Carosi M, Vignoli L, Lauro D, And Gentile G (2016) Plasma concentrations of progesterone and estradiol and the relation to reproduction in Galápagos land iguanas, Conolophus marthae and C. subcristatus (Squamata, Iguanidae). Anim Reprod Sci 172:105–113CrossRefGoogle Scholar
  44. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefGoogle Scholar
  45. Peakall R, Smouse E, Huff DR (1995) Evolutionary implications of allozyme and RAPD Variation in diploid populations of dioecious buffalograss Buchloe dactyloides. Mol Ecol 4:135–147CrossRefGoogle Scholar
  46. Petit RJ (2004) Biological invasion at the gene level. Divers Distrib 10:159–165CrossRefGoogle Scholar
  47. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  48. Pruett CL, Turner TN, Topp CM, Zagrebelny KW (2010) Divergence in an archipelago and its conservation consequences in Aleutian Island rock ptarmigan. Cons Gen 11:241–248CrossRefGoogle Scholar
  49. Rassmann K, Trillmich F, Tautz B (1997) Hybridization between Galápagos land and marine iguana (Conolophus subcristatus and Amblyrhynchus cristatus) in Plaza Sur. J Zool Lond 242:729–739CrossRefGoogle Scholar
  50. Raymond M, Rousset F (1995) GENEPOP Version 1.2: population genetic software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  51. Rhymer JK, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109CrossRefGoogle Scholar
  52. Rivas LR (1964) A reinterpretation of the concepts “Sympatric” and “Allopatric” with proposal of the additional terms “Syntopic” and “Allotopic”. Syst Biol 13:42–43CrossRefGoogle Scholar
  53. Rosa SFP, Monteyne D, Milinkovitch MC (2009) Development of 10 highly-polimorphic microsatellite markers in the vulnerable Galápagos land iguana (genus Conolophus). Mol Ecol Res 9:376–379CrossRefGoogle Scholar
  54. Schwartz MK, Pilgrim KL, McKelvey KS, Lindquist EL, Claar JJ, Loch S, Ruggiero LF (2004) Hybridization between Canada lynx and bobcats: genetic results and management implications. Conserv Genet 5:349–355CrossRefGoogle Scholar
  55. Schwenk K, Brede N, Streit B (2008) Introduction. extent, processes and evolutionary impact of interspecific hybridization in animals. Philos Trans R Soc B 363:2805–2811CrossRefGoogle Scholar
  56. Servedio MR (2001) Beyond reinforcement: the evolution of premating isolation by direct selection on preference and postmating, prezygotic incompatibilities. Evolution 55:1909–1920CrossRefGoogle Scholar
  57. Steinfartz S, Caccone A (2006) A Set of highly discriminating microsatellite loci for the Galápagos marine iguana Amblyrhynchus cristatus. Mol Ecol Notes 6:927–929CrossRefGoogle Scholar
  58. Szpiech ZA, Rosenberg NA (2011) On the size distribution of private microsatellite alleles. Theor Popul Biol 80:100–113CrossRefGoogle Scholar
  59. Tzika A, Rosa S, Marquez C, Snell H, Snell H, Tapia W, Gentile G, Milinkovitch M (2008) Population genetics of Galápagos land iguana (genus Conolophus) remnant populations. Mol Ecol 17:4943–4952CrossRefGoogle Scholar
  60. Van Oosterhout C, Hutchinson WS, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  61. van den Burg MP, Meirmans PG, van Wagensveld TP, Kluskens B, Madden H, Welch ME, Breeuwer JAJ (2018) The Lesser Antillean iguana (Iguana delicatissima) on St. Eustatius: genetically depauperate and threatened by ongoing hybridization. J Hered 109:426–437CrossRefGoogle Scholar
  62. Weir BS, Cockerham CC (1984) Estimating F-statistic for the analysis of population structure. Evolution 38:1358–1370Google Scholar
  63. Wilson A, Arcese P, Keller LF, Pruett CL, Winker K, Patten MA et al (2009) The contribution of island populations to in situ genetic conservation. Conserv Genet 10:419–430CrossRefGoogle Scholar
  64. Wright S (1969) Evolution and the genetics of populations, vol 2. The theory of gene frequencies. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Rome Tor VergataRomeItaly
  2. 2.Galápagos National Park DirectorateGalápagosEcuador

Personalised recommendations