Advertisement

Do roads act as a barrier to gene flow of subterranean small mammals? A case study with Ctenomys minutus

  • Isadora Beraldi EsperandioEmail author
  • Fernando Ascensão
  • Andreas Kindel
  • Ligia Tchaicka
  • Thales Renato Ochotorena de Freitas
Research Article

Abstract

Road-barrier effects can lead to population isolation, with consequent negative outcomes for individuals and populations. Small mammals have been identified as particularly vulnerable to barrier effects, yet few studies have focused on subterranean species. Given the burrowing habit of these species, we hypothesized that roads block their movement and therefore the gene flow between roadside populations. The tiny tuco-tuco (Ctenomys minutus), a small subterranean rodent that inhabits the coastal plains of southern Brazil, was used as a model species to test this hypothesis. We used 14 microsatellites to genotype 80 individuals from four colonies (n = 20 per colony). We compared the population differentiation (FST, GST and DEST) and population structuring (STRUCTURE and GENELAND, and discriminant analysis of principal components) of two colony pairs, one pair divided by a road, and the other with no road or other potential barrier between the colonies (control). The results indicated higher genetic differentiation and structuring between the roadside colonies than in the control sites, although less evident than initially predicted. We concluded that the road reduced but did not halt the gene flow of C. minutus. Nevertheless, in view of the rapid economic development of the region, measures to ensure long-term gene flow, i.e., installation or retrofitting of crossing structures, should be considered. This study complements previous analyses of road-barrier effects on small mammals, suggesting that subterranean species such as C. minutus can cope with these barriers, at least in conditions similar to our study area.

Keywords

Road avoidance Microsatellite Habitat fragmentation Genetic differentiation Brazil Road ecology 

Notes

Acknowledgements

We thank the Laboratory of Cytogenetics and Evolution of the Department of Genetics/UFRGS for making the samples available, and all colleagues who collaborated in the laboratory work. We thank C.B. Grilo, G.L. Gonçalves, D.L. Guadagnin and the anonymous reviewers for comments on a previous version of this manuscript. I.B.E. would like to thank CAPES for her scholarship. FA was funded by a FCT postdoctoral grant (Fundação para a Ciência e Tecnologia, SFRH/BPD/115968/2016) and LT was funded by FAPEMA (Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico, Tecnológico do Maranhão, CBIOMA 3812/15). We also thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul).

Supplementary material

10592_2018_1139_MOESM1_ESM.docx (161 kb)
Supplementary material 1 (DOCX 160 KB)

References

  1. Applied Biosystem (2006) Peak Scanner™ Software Version 1.0. 68Google Scholar
  2. Ascensão F, LaPoint S, van der Ree R (2015) Roads, traffic and verges: big problems and big opportunities for small mammals. In: Handbook of road ecology. Wiley, New York, pp 325–333Google Scholar
  3. Ascensão F, Mata C, Malo JE et al (2016) Disentangle the causes of the road barrier effect in small mammals through genetic patterns. PLoS ONE.  https://doi.org/10.1371/journal.pone.0151500 Google Scholar
  4. Ascensão F, Lucas PS, Costa A, Bager A (2017) The effect of roads on edge permeability and movement patterns for small mammals: a case study with Montane Akodont. Landsc Ecol 32:781–790.  https://doi.org/10.1007/s10980-017-0485-z CrossRefGoogle Scholar
  5. Balkenhol N, Waits LP (2009) Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Mol Ecol 18:4151–4164.  https://doi.org/10.1111/j.1365-294X.2009.04322.x CrossRefGoogle Scholar
  6. Balkenhol N, Waits LP, Dezzani RJ (2009) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32:818–830.  https://doi.org/10.1111/j.1600-0587.2009.05807.x CrossRefGoogle Scholar
  7. Bhattacharya M, Primack RB, Gerwein J (2003) Are roads and railroads barriers to bumblebee movement in a temperate suburban conservation area? Biol Conserv 109:37–45.  https://doi.org/10.1016/S0006-3207(02)00130-1 CrossRefGoogle Scholar
  8. Blair C, Weigel DE, Balazik M et al (2012) A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol Ecol Resour 12:822–833.  https://doi.org/10.1111/j.1755-0998.2012.03151.x CrossRefGoogle Scholar
  9. Brehme CS, Tracey J, McClenaghan LR, Fisher RN (2013) Permeability of roads to movement of scrubland lizards and small mammals. Conserv Biol 27:710–720.  https://doi.org/10.1111/cobi.12081 CrossRefGoogle Scholar
  10. DAER (2005) Volume Diário Médio—2004. http://www.daer.rs.gov.br/vdm-de-rodovias. Accessed 26 Jan 2014
  11. DAER (2014) Volume Diário Médio—2014. http://www.daer.rs.gov.br/vdm-de-rodovias
  12. da Fonseca MB (2003) Biologia populacional e classificação etária do roedor subterrâneo tuco-tuco Ctenomys minutus Nehring, 1887 (Rodentia, Ctenomyidae) na planície costeira do Rio Grande do Sul, Brasil. Universidade Federal do Rio Grande do SulGoogle Scholar
  13. De Freitas TRO (1995) Studies on neotropical fauna and environment geographic distribution and conservation of four species of the genus ctenomys in southern Brazil. Stud Neotrop Fauna Environ 30:53–59CrossRefGoogle Scholar
  14. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour.  https://doi.org/10.1007/s12686-011-9548-7 Google Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  16. Fahrig L, Rytwinski T, Function L et al (2009) Effects of roads on animal abundance: an empirical review and synthesis. Ecol Soc 14:21CrossRefGoogle Scholar
  17. Frantz AC, Pope LC, Etherington TR et al (2010) Using isolation-by-distance-based approaches to assess the barrier effect of linear landscape elements on badger (Meles meles) dispersal. Mol Ecol 19:1663–1674.  https://doi.org/10.1111/j.1365-294X.2010.04605.x CrossRefGoogle Scholar
  18. Freygang CC, Marinho JR, Freitas TRO De (2004) New karyotypes and some considerations about the chromosomal diversification of Ctenomys minutus (Rodentia: Ctenomyidae) on the coastal plain of the Brazilian State of Rio Grande do Sul. Genetica 121:125–132CrossRefGoogle Scholar
  19. Galiano D, Kubiak BB, Menezes LS et al (2016) Wet soils affect habitat selection of a solitary subterranean rodent (Ctenomys minutus) in a Neotropical region. J Mammal 97:1095–1101.  https://doi.org/10.1093/jmammal/gyw062 CrossRefGoogle Scholar
  20. Garcias FM (2013) Aspectos da ecologia populacional do tuco-tuco-das-dunas (Travi, 1981) (Ctenomys flamarioni – Rodentia – Ctenomydae) na Estação Ecológica do Taim, Rio Grande do Sul, Brasil. Universidade Federal do Rio Grande do SulGoogle Scholar
  21. Grilo C, Del Cerro I, Centeno-Cuadros A et al (2016) Heterogeneous road networks have no apparent effect on the genetic structure of small mammal populations. Sci Total Environ 706–713.  https://doi.org/10.1016/j.scitotenv.2016.05.074
  22. Guedj B, Guillot G (2011) Estimating the location and shape of hybrid zones. Mol Ecol Resour 11:1119–1123.  https://doi.org/10.1111/j.1755-0998.2011.03045.x CrossRefGoogle Scholar
  23. Guillot G (2008) Inference of structure in subdivided populations at low levels of genetic differentiation: the correlated allele frequencies model revisited. Bioinformatics 24:2222–2228.  https://doi.org/10.1093/bioinformatics/btn419 CrossRefGoogle Scholar
  24. Guillot G, Santos F (2010) Using AFLP markers and the Geneland program for the inference of population genetic structure. Mol Ecol Resour 10:1082–1084.  https://doi.org/10.1111/j.1755-0998.2010.02864.x CrossRefGoogle Scholar
  25. Guillot G, Estoup A, Mortier F, Cosson JF (2005a) A spatial statistical model for landscape genetics. Genetics 170:1261–1280.  https://doi.org/10.1534/genetics.104.033803 CrossRefGoogle Scholar
  26. Guillot G, Mortier F, Estoup A (2005b) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715.  https://doi.org/10.1111/j.1471-8286.2005.01031.x CrossRefGoogle Scholar
  27. Guillot G, Santos F, Estoup A (2008) Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24:1406–1407.  https://doi.org/10.1093/bioinformatics/btn136 CrossRefGoogle Scholar
  28. Herrmann H-W, Pozarowski KM, Ochoa A, Schuett GW (2017) An interstate highway affects gene flow in a top reptilian predator (Crotalus atrox) of the Sonoran Desert. Conserv Genet 18:911–924.  https://doi.org/10.1007/s10592-017-0936-8 CrossRefGoogle Scholar
  29. Heuser VD, Silva J, Moriske H-J et al (2002) Genotoxicity biomonitoring in regions exposed to vehicle emissions using the comet assay and the micronucleus test in native rodent Ctenomys minutus. Environ Mol Mutagen 40:227–235.  https://doi.org/10.1002/em.10115 CrossRefGoogle Scholar
  30. Holderegger R, Di Giulio M (2010) The genetic effects of roads: a review of empirical evidence. Basic Appl Ecol 11:522–531.  https://doi.org/10.1016/j.baae.2010.06.006 CrossRefGoogle Scholar
  31. Ji S, Jiang Z, Li L et al (2017) Impact of different road types on small mammals in Mt. Kalamaili Nature Reserve. Transp Res Part D Transp Environ 50:223–233.  https://doi.org/10.1016/j.trd.2016.11.006 CrossRefGoogle Scholar
  32. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405.  https://doi.org/10.1093/bioinformatics/btn129 CrossRefGoogle Scholar
  33. Jombart T, Devillard S, Balloux F et al (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94.  https://doi.org/10.1186/1471-2156-11-94 CrossRefGoogle Scholar
  34. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026CrossRefGoogle Scholar
  35. Keller I, Largiadèr CR (2003) Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc R Soc B Biol Sci 270:417–423.  https://doi.org/10.1098/rspb.2002.2247 CrossRefGoogle Scholar
  36. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241Google Scholar
  37. Lacey E (2001) Microsatellite variation in solitary and social tuco-tucos: molecular properties and population dynamics. Heredity 86:628–637CrossRefGoogle Scholar
  38. Lacey EA, Maldonado JE, Clabaugh JP, Matocq MD (1999) Interspecific variation in microsatellites isolated from tuco-tucos (Rodentia: Ctenomyidae). Mol Ecol 8:1753–1768CrossRefGoogle Scholar
  39. Lacey EA, Patton JL, Cameron GN (2000) Life underground: the biology of subterranean rodent. University of Chicago Press, ChicagoGoogle Scholar
  40. Lesbarreres D, Fahrig L (2012) Measures to reduce population fragmentation by roads: what has worked and how do we know? Trends Ecol Evol 27:374–380.  https://doi.org/10.1016/j.tree.2012.01.015 CrossRefGoogle Scholar
  41. Lopes CM, Ximenes SSF, Gava A, de Freitas TRO (2013) The role of chromosomal rearrangements and geographical barriers in the divergence of lineages in a South American subterranean rodent (Rodentia: Ctenomyidae: Ctenomys minutus). Heredity 111:293–305.  https://doi.org/10.1038/hdy.2013.49 CrossRefGoogle Scholar
  42. Malizia AI, Zenuto RR, Busch C (1995) Demographic and reproductive attributes of dispersers in two populations of the subterranean rodent Ctenomys talarum (tuco-tuco). Can J Zool 73:732–738CrossRefGoogle Scholar
  43. Marinho JR, De Freitas TRO (2006) Population structure of Ctenomys minutus (Rodentia, Ctenomyidae) on the coastal plain of Rio Grande do Sul, Brazil. Acta Theriol (Warsz) 51:53–59CrossRefGoogle Scholar
  44. Marsh DM, Milam GS, Gorham NP, Beckman NG (2005) Forest roads as partial barriers to terrestrial salamander movement. Conserv Biol 19:2004–2008.  https://doi.org/10.1111/j.1523-1739.2005.00238.x CrossRefGoogle Scholar
  45. Marsh DM, Page RB, Hanlon TJ et al (2008) Effects of roads on patterns of genetic differentiation in red-backed salamanders, Plethodon cinereus. Conserv Genet 9:603–613.  https://doi.org/10.1007/s10592-007-9377-0 CrossRefGoogle Scholar
  46. McGregor RL, Bender DJ, Fahrig L (2008) Do small mammals avoid roads because of the traffic? J Appl Ecol 45:117–123CrossRefGoogle Scholar
  47. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18.  https://doi.org/10.1111/j.1755-0998.2010.02927.x CrossRefGoogle Scholar
  48. Mora MS, Mapelli FJ, Gaggiotti OE et al (2010) Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis. BMC Genet 11:9.  https://doi.org/10.1186/1471-2156-11-9 CrossRefGoogle Scholar
  49. Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420.  https://doi.org/10.1093/bioinformatics/btp696 doiCrossRefGoogle Scholar
  50. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945Google Scholar
  51. R Core Team (2017) R: a language and environment for statistical computing. Version 3.4.1Google Scholar
  52. Reed DH, Nicholas AC, Stratton GE (2007) Genetic quality of individuals impacts population dynamics. Anim Conserv 10:275–283.  https://doi.org/10.1111/j.1469-1795.2007.00120.x CrossRefGoogle Scholar
  53. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  54. Riley SPD, Pollinger JP, Sauvajot RM et al (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15:1733–1741.  https://doi.org/10.1111/j.1365-294X.2006.02907.x CrossRefGoogle Scholar
  55. Rohner C, Krebs C (1996) Owl predation on snowshoe hares: consequences of antipredator behaviour. Oecologia 108:303–310.  https://doi.org/10.2307/4221419 CrossRefGoogle Scholar
  56. Roratto PA, Bartholomei-Santos ML, Freitas TRO De (2011) Tetranucleotide microsatellite markers in Ctenomys torquatus (Rodentia). Conserv Genet Resour 3:725–727.  https://doi.org/10.1007/s12686-011-9442-3 CrossRefGoogle Scholar
  57. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefGoogle Scholar
  58. Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol 6:600–602.  https://doi.org/10.1111/j.1365-294X.2006.01378.x CrossRefGoogle Scholar
  59. Shepard DB, Kuhns AR, Dreslik MJ, Phillips CA (2008) Roads as barriers to animal movement in fragmented landscapes. Anim Conserv 11:288–296.  https://doi.org/10.1111/j.1469-1795.2008.00183.x CrossRefGoogle Scholar
  60. Smith JE, Batzli GO (2006) Dispersal and mortality of prairie voles (Microtus ochrogaster) in fragmented landscapes: a field experiment. Oikos 112:209–217CrossRefGoogle Scholar
  61. Stolz JFB (2006) Dinâmica populacional e relações espaciais do tuco-tuco-das-dunas (Rodentia - Ctenomyidae) na Estação Ecológica do Taim - RS/Brasil. Universidade Federal do Rio Grande do SulGoogle Scholar
  62. Tchaicka L (2002) Análise de duas barreiras ao fluxo gênico entre populações de Ctenomys minutus da Planície Costeira do sul do Brasil. Universidade Federal do Rio Grande do SulGoogle Scholar
  63. Vos CC, Antonisse-De Jong AG, Goedhart PW, Smulders MJ (2001) Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86:598–608CrossRefGoogle Scholar
  64. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370Google Scholar
  65. Winter DJ (2012) MMOD: an R library for the calculation of population differentiation statistics. Mol Ecol Resour 12:1158–1160.  https://doi.org/10.1111/j.1755-0998.2012.03174.x CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em EcologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Programa de Pós-Graduação em Recursos Aquáticos e Pesca, Centro de Educação, Ciências Exatas e NaturaisUniversidade Estadual do MaranhãoSão LuísBrazil
  3. 3.CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
  4. 4.CEABN/InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de AgronomiaUniversidade de LisboaLisbonPortugal
  5. 5.Departamento de GenéticaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations