Advertisement

Rank-two update algorithm versus Frank–Wolfe algorithm with away steps for the weighted Euclidean one-center problem

  • Wei-jie CongEmail author
  • Le Wang
  • Hui Sun
Article
  • 23 Downloads

Abstract

The weighted Euclidean one-center (WEOC) problem is one of the classic problems in facility location theory, which is also a generalization of the minimum enclosing ball (MEB) problem. Given m points in \({\mathbb {R}}^{n}\), the WEOC problem computes a center point \(c\in {\mathbb {R}}^{n}\) that minimizes the maximum weighted Euclidean distance to m given points. The rank-two update algorithm is an effective method for solving the minimum volume enclosing ellipsoid (MVEE) problem. It updates only two components of the solution at each iteration, which was previously proposed in Cong et al. (Comput Optim Appl 51(1):241–257, 2012). In this paper, we further develop and analyze the rank-two update algorithm for solving the WEOC problem. At each iteration, the calculation of the optimal step-size for the WEOC problem needs to distinguish four different cases, which is a challenge in comparison with the MVEE problem. We establish the theoretical results of the complexity and the core set size of the rank-two update algorithm for the WEOC problem, which are the generalizations of the currently best-known results for the MEB problem. In addition, by constructing an important inequality for the WEOC problem, we establish the linear convergence of this rank-two update algorithm. Numerical experiments show that the rank-two update algorithm is comparable to the Frank–Wolfe algorithm with away steps for the WEOC problem. In particular, the rank-two update algorithm is more efficient than the Frank–Wolfe algorithm with away steps for problem instances with \(m\gg n\) under high precision.

Keywords

Weighted Euclidean one-center Minimum enclosing ball Minimum volume enclosing ellipsoid Rank-two update algorithm Linear convergence Frank–Wolfe algorithm with away steps 

Notes

Acknowledgements

The authors sincerely appreciate the two anonymous referees for their careful reading and the fruitful comments which led to the improvement of this paper.

References

  1. 1.
    Ahipasaoglu, S.D., Sun, P., Todd, M.J.: Linear convergence of a modified Frank–Wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optim. Methods Softw. 23(1), 5–19 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ahipasaoglu, S.D., Yıldırım, E.A.: Identification and elimination of interior points for the minimum enclosing ball problem. SIAM J. Optim. 19(3), 1392–1396 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brimberg, J.: The Fermat–Weber location problem revisited. Math. Program. 71(1), 71–76 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bǎdoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Comput. Geom. Theory Appl. 40(1), 14–22 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berger, A., Grigoriev, A., Winokurow, A.: An efficient algorithm for the single facility location problem with polyhedral norms and disk-shaped demand regions. Comput. Optim. Appl. 68(3), 661–669 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chandrasekaran, R.: The weighted Euclidean 1-center problem. Oper. Res. Lett. 1(3), 111–112 (1982)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cong, W.-J., Liu, H.-W., Ye, F., Zhou, S.-S.: Rank-two update algorithms for the minimum volume enclosing ellipsoid problem. Comput. Optim. Appl. 51(1), 241–257 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Drezner, Z., Gavish, B.: \(\epsilon \)-approximations for multidimensional weighted location problems. Oper. Res. 33(4), 772–783 (1985)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Drezner, Z., Wesolowsky, G.O.: Single facility \(l_p\)-distance minimax location. SIAM J. Algebr. Discrete Methods 1(3), 315–321 (1980)CrossRefGoogle Scholar
  10. 10.
    Francis, R.L.: Letter to the editor-some aspects of a minimax location problem. Oper. Res. 15(6), 1163–1169 (1967)CrossRefGoogle Scholar
  11. 11.
    Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logist. Q. 3(1–2), 95–110 (1956)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hakimi, S.L.: Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 12(3), 450–459 (1964)CrossRefGoogle Scholar
  13. 13.
    Hearn, D., Lowe, T.J.: A subgradient procedure for the solution of minimax location problems. Comput. Ind. Eng. 2(1), 17–25 (1978)CrossRefGoogle Scholar
  14. 14.
    Hansen, P., Peeters, D., Richard, D., Thisse, J.F.: The minisum and minimax location problems revisited. Oper. Res. 33(6), 1251–1265 (1985)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kuhn, H.W.: On a pair of dual nonlinear programs. In: Abadie, J. (ed.) Nonlinear Programming, pp. 37–54. North-Holland, Amsterdam (1967)Google Scholar
  16. 16.
    Kumar, P., Yıldırım, E.A.: Minimum-volume enclosing ellipsoids and core sets. J. Optim. Theory Appl. 126(1), 1–21 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kumar, P., Yıldırım, E.A.: An algorithm and a core set result for the weighted Euclidean one-center problem. INFORMS J. Comput. 21(4), 614–629 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Megiddo, N.: The weighted Euclidean 1-center problem. Math. Oper. Res. 8(4), 498–504 (1983)MathSciNetCrossRefGoogle Scholar
  19. 19.
    \(\tilde{\text{N}}\)anculef, R., Frandi, E., Sartori, C., Allende, H.: A novel Frank–Wolfe algorithm. Inf. Sci. 285, 66–99 (2014)Google Scholar
  20. 20.
    Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Kernel Methods-Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)Google Scholar
  21. 21.
    Pronzato, L.: On the elimination of inessential points in the smallest enclosing ball problem. Optim. Methods Softw. 34(2), 225–247 (2019)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Robinson, S.M.: Generalized equations and their solutions, part II: applications to nonlinear programming. Math. Program. Study 19, 200–221 (1982)CrossRefGoogle Scholar
  23. 23.
    Sun, P., Freund, R.M.: Computation of minimum-volume covering ellipsoids. Oper. Res. 52(5), 690–706 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Todd, M.J., Yıldırım, E.A.: On Khachiyan’s algorithm for the computation of minimum-volume enclosing ellipsoids. Discrete Appl. Math. 155(13), 1731–1744 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wolfe, P.: Convergence theory in nonlinear programming. In: Abadie, J. (ed.) Integer and Nonlinear Programming, pp. 1–36. North-Holland, Amsterdam (1970)Google Scholar
  26. 26.
    Wagner, F., Wolff, A.: A combinatorial framework for map labeling. In: International Symposium on Graph Drawing. LNCS, vol. 1547, pp. 316–331. Springer, Berlin (1998)CrossRefGoogle Scholar
  27. 27.
    Yıldırım, E.A.: Two algorithms for the minimum enclosing ball problem. SIAM J. Optim. 19(3), 1368–1391 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations