Computational Optimization and Applications

, Volume 74, Issue 3, pp 623–626 | Cite as

COAP 2018 Best Paper Prize


Each year, the editorial board of Computational Optimization and Applications selects a paper from the preceding year’s publications for the Best Paper Award. In 2018, 93 papers were published by the journal. The recipients of the 2018 Best Paper Award are Christoph Buchheim (Technische Universität Dortmund), Renke Kuhlmann (University of Wisconsin, Madison), and Christian Meyer (Technische Universität Dortmund) for their paper “Combinatorial optimal control of semilinear elliptic PDEs” published in volume 70, pages 641–675. This article highlights the research related to the award winning paper.

In [1], the authors study the optimal control of semilinear partial differential equations (PDEs) over combinatorial constraints. This problem class models static diffusion processes that are controllable by switching heat sources on/off and where the switching itself may be constrained, e.g., by a knapsack condition. Solving this kind of problem to global optimality is extremely difficult,...



  1. 1.
    Buchheim, C., Kuhlmann, R., Meyer, C.: Combinatorial optimal control of semilinear elliptic PDEs. Comput. Optim. Appl. 70(3), 641–675 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Fügenschuh, A., Geißler, B., Martin, A., Morsi, A.: The transport PDE and mixed-integer linear programming. In: Barnhart, C., Clausen, U., Lauther, U., Möhring, R.H. (eds.) Models and Algorithms for Optimization in Logistics, Number 09261 in Dagstuhl Seminar Proceedings. Schloss Dagstuhl: Leibniz-Zentrum für Informatik, Wadern (2009)Google Scholar
  3. 3.
    Geißler, B., Kolb, O., Lang, J., Leugering, G., Martin, A., Morsi, A.: Mixed integer linear models for the optimization of dynamical transport networks. Math. Methods Oper. Res. 73(3), 339–362 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Sager, S., Bock, H., Diehl, M.: The integer approximation error in mixed-integer optimal control. Math. Program. 133(1–2), 1–23 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Sager, S., Jung, M., Kirches, C.: Combinatorial integral approximation. Math. Methods Oper. Res. 73(3), 363–380 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Personalised recommendations