Advertisement

Modified extragradient-like algorithms with new stepsizes for variational inequalities

  • Dang Van HieuEmail author
  • Pham Ky Anh
  • Le Dung Muu
Article
  • 48 Downloads

Abstract

The paper concerns with an algorithm for approximating solutions of a variational inequality problem involving a Lipschitz continuous and monotone operator in a Hilbert space. The algorithm uses a new stepsize rule which does not depend on the Lipschitz constant and without any linesearch procedure. The resulting algorithm only requires to compute a projection on feasible set and a value of operator over each iteration. The convergence and the convergence rate of the algorithm are established. Some experiments are performed to show the numerical behavior of the proposed algorithm and also to compare its performance with those of others.

Keywords

Variational inequality Monotone operator Extragradient method Subgradient extragradient method Projection method 

Mathematics Subject Classification

65Y05 65K15 68W10 47H05 47H10 

Notes

Acknowledgements

The authors would like to thank the Associate Editor and two anonymous referees for their valuable comments and suggestions which helped us very much in improving the original version of this paper. The first and third-named authors are supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the project: 101.01-2017.315.

References

  1. 1.
    Antipin, A.S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekon. Mat. Metody 12, 1164–1173 (1976)Google Scholar
  2. 2.
    Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003)zbMATHGoogle Scholar
  6. 6.
    Fichera, G.: Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 34, 138–142 (1963)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Fichera, G.: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., Sez. I, VIII. Ser. 7, 91–140 (1964)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gibali, A.: A new Bregman projection method for solving variational inequalities in Hilbert spaces. Pure Appl. Funct. Anal. 3, 403–415 (2018)MathSciNetGoogle Scholar
  9. 9.
    Gibali, A.: A new non-Lipschitzian projection method for solving variational inequalities in Euclidean spaces. J. Nonlinear Anal. Optim. 6, 41–51 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)zbMATHGoogle Scholar
  11. 11.
    Hartman, P., Stampacchia, G.: On some non-linear elliptic diferential-functional equations. Acta Math. 115, 271–310 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hieu, D.V., Thong, D.V.: New extragradient-like algorithms for strongly pseudomonotone variational inequalities. J. Glob. Optim. 70, 385–399 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kanzow, C.: Some equation-based methods for the nonlinear complemantarity problem. Optim. Methods Softw. 3, 327–340 (1994)CrossRefGoogle Scholar
  14. 14.
    Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Khanh, P.D.: A new extragradient method for strongly pseudomonotone variational inequalities. Numer. Funct. Anal. Optim. 37, 1131–1143 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Khanh, P.D., Vuong, P.T.: Modified projection method for strongly pseudomonotone variational inequalities. J. Glob. Optim. 58, 341–350 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Khobotov, E.N.: Modification of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1989)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  19. 19.
    Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2000)zbMATHGoogle Scholar
  20. 20.
    Konnov, I.V.: Equilibrium Models and Variational Inequalities. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  21. 21.
    Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody 12, 747–756 (1976)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Malitsky, Y.: Golden Ratio Algorithms for Variational Inequalities (2018). arXiv:1803.08832
  23. 23.
    Malitsky, Y.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Malitsky, Y.V., Semenov, V.V.: An extragradient algorithm for monotone variational inequalities. Cybern. Syst. Anal. 50, 271–277 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Popov, L.D.: A modification of the Arrow–Hurwicz method for searching for saddle points. Mat. Zametki 28(5), 777–784 (1980)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Semenov, V.V.: A version of the mirror descent method to solve variational inequalities. Cybern. Syst. Anal. 53, 234–243 (2017)CrossRefzbMATHGoogle Scholar
  27. 27.
    Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sun, D.: A projection and contraction method for the nonlinear complementarity problems and its extensions. Math. Numer. Sin. 16, 183–194 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Thong, D.V., Hieu, D.V.: Weak and strong convergence theorems for variational inequality problems. Numer. Algor. 78, 1045–1060 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Tinti, F.: Numerical solution for pseudomonotone variational inequality problems by extragradient methods. Var. Anal. Appl. 79, 1101–1128 (2004)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Vuong, P.T., Shehu, Y.: Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer. Algor. (2018).  https://doi.org/10.1007/s11075-018-0547-6
  32. 32.
    Yang, J., Liu, H.: Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer. Algor. 80, 741–752 (2019)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Applied Analysis Research Group, Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Department of MathematicsVietnam National University, HanoiThanh Xuan, HanoiVietnam
  3. 3.TIMASThang Long UniversityHanoiVietnam

Personalised recommendations