An effective adaptive trust region algorithm for nonsmooth minimization
- 31 Downloads
Abstract
In this paper, an adaptive trust region algorithm that uses Moreau–Yosida regularization is proposed for solving nonsmooth unconstrained optimization problems. The proposed algorithm combines a modified secant equation with the BFGS update formula and an adaptive trust region radius, and the new trust region radius utilizes not only the function information but also the gradient information. The global convergence and the local superlinear convergence of the proposed algorithm are proven under suitable conditions. Finally, the preliminary results from comparing the proposed algorithm with some existing algorithms using numerical experiments reveal that the proposed algorithm is quite promising for solving nonsmooth unconstrained optimization problems.
Keywords
Nonsmooth problems Moreau–Yosida regularization Trust region algorithm Global convergence Superlinear convergenceMathematical subject classification
65K05 90C26Notes
Acknowledgements
The authors would like to thank the referees and the editor for their valuable comments that greatly improved this paper. This work is supported by the National Natural Science Foundation of China (11661009 and 11261006), the Guangxi Science Fund for Distinguished Young Scholars (No. 2015GXNSFGA139001), the Guangxi Natural Science Key Fund (No. 2017GXNSFDA198046), and the Basic Ability Promotion Project of Guangxi Young and Middle-aged Teachers (No. 2017KY0019).
References
- 1.Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific Publishing, Singapore (1992)CrossRefMATHGoogle Scholar
- 2.Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Berlin (2014)CrossRefMATHGoogle Scholar
- 3.Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10, 507–518 (2015)CrossRefGoogle Scholar
- 4.Luks̆an, L., Vlc̆ek, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Program. 83, 373–391 (1998)MathSciNetGoogle Scholar
- 5.Mäkelä, M.M.: Survey of bundle methods for nonsmooth optimization. Optim. Methods Softw. 17, 1–29 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 6.Shor, N.Z.: Minimization Methods for Non-differentiable Functions. Springer, Berlin (2012)Google Scholar
- 7.Polak, E., Royset, J.O.: Algorithms for finite and semi-infinite min-max-min problems using adaptive smoothing techniques. J. Optim. Theory Appl. 119, 421–457 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 8.Grapiglia, G.N., Yuan, J., Yuan, Y.: A derivative-free trust-region algorithm for composite nonsmooth optimization. Comput. Appl. Math. 32, 1–25 (2014)MATHGoogle Scholar
- 9.Fukushima, M., Qi, L.: A globally and superlinearly convergent algorithm for nonsmooth convex minimization. SIAM J. Optim. 6, 1106–1120 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 10.Sagara, N., Fukushima, M.: A trust region method for nonsmooth convex optimization. J. Ind. Manag. Optim. 1, 171–180 (2005)MathSciNetCrossRefMATHGoogle Scholar
- 11.Zhang, L.: A new trust region algorithm for nonsmooth convex minimization. Appl. Math. Comput. 193, 135–142 (2007)MathSciNetMATHGoogle Scholar
- 12.Yuan, G., Wei, Z.: The Barzilai and Borwein gradient method with nonmonotone line search for nonsmooth convex optimization problems. Math. Model. Anal. 17, 203–216 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 13.Yuan, G., Wei, Z., Wang, Z.: Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex minimization. Comput. Optim. Appl. 54, 45–64 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 14.Cui, Z., Yuan, G., Sheng, Z., Liu, W., Wang, X., Duan, X.: A modified BFGS formula using a trust region model for nonsmooth convex minimizations. PLoS ONE 10, 1–15 (2015)Google Scholar
- 15.Ou, Y., Lin, H.: An ODE-like nonmonotone method for nonsmooth convex optimization. J. Appl. Math. Comput. 52, 1–21 (2015)MathSciNetGoogle Scholar
- 16.Yuan, G., Meng, Z., Li, Y.: A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations. J. Optim. Theory Appl. 168, 129–152 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 17.Yuan, G., Sheng, Z., Liu, W.: The modified HZ conjugate gradient algorithm for large-scale nonsmooth optimization. PLoS ONE 11, 1–15 (2016)Google Scholar
- 18.Yuan, G., Sheng, Z.: Nonsmooth Optimization Algorithms. Press of Science, Beijing (2017)Google Scholar
- 19.Qi, L., Sun, J.: A trust region algorithm for minimization of locally Lipschitzian functions. Math. Program. 66, 25–43 (1994)MathSciNetCrossRefMATHGoogle Scholar
- 20.Akbari, Z., Yousefpour, R., Peyghami, M.R.: A new nonsmooth trust region algorithm for locally Lipschitz unconstrained optimization problems. J. Optim. Theory Appl. 164, 733–754 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 21.Powell, M.J.D.: A new algorithm for unconstrained optimization. In: Rosen, J.B., Mangasarian, O.L., Ritter, K. (eds.) Nonlinear Programming, pp. 31–65. Academic Press (1970).Google Scholar
- 22.Zhang, X., Zhang, J., Liao, L.: An adaptive trust region method and its convergence. Sci. China Ser. A Math. 45, 620–631 (2002)MathSciNetMATHGoogle Scholar
- 23.Cui, Z., Wu, B.: A new modified nonmonotone adaptive trust region method for unconstrained optimization. Comput. Optim. Appl. 53, 795–806 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 24.Li, G.: A trust region method with automatic determination of the trust region radius. Chin. J. Eng. Math. 23, 843–848 (2006)MathSciNetMATHGoogle Scholar
- 25.Shi, Z.J., Guo, J.H.: A new trust region method for unconstrained optimization. J. Comput. Appl. Math. 213, 509–520 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 26.Shi, Z., Wang, S.: Nonmonotone adaptive trust region method. Eur. J. Oper. Res. 208, 28–36 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 27.Cui, Z., Wu, B.: A new trust region method with adaptive radius for unconstrained optimization. Optim. Methods Softw. 27, 419–429 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 28.Zhou, Q., Hang, D.: Nonmonotone adaptive trust region method with line search based on new diagonal updating. Appl. Numer. Math. 91, 75–88 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 29.Kamandi, A., Amini, K., Ahookhosh, M.: An improved adaptive trust-region algorithm. Optim. Lett. 11, 1–15 (2016)MathSciNetMATHGoogle Scholar
- 30.Esmaeili, H., Kimiaei, M.: A new adaptive trust-region method for system of nonlinear equations. Appl. Math. Model. 38, 3003–3015 (2014)MathSciNetCrossRefGoogle Scholar
- 31.Kimiaei, M., Esmaeili, H.: A trust-region approach with novel filter adaptive radius for system of nonlinear equations. Numer. Algoritm. 73, 1–18 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 32.Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)MathSciNetCrossRefMATHGoogle Scholar
- 33.Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Bangkok (1983)MATHGoogle Scholar
- 34.Pang, J.S., Qi, L.: A globally convergent Newton method for convex \(SC^1\) minimization problems. J. Optim. Theory Appl. 85, 633–648 (1995)MathSciNetCrossRefMATHGoogle Scholar
- 35.Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods, vol. 306 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1993)CrossRefMATHGoogle Scholar
- 36.Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)MathSciNetCrossRefMATHGoogle Scholar
- 37.Fukushima, M.: A descent algorithm for nonsmooth convex optimization. Math. Program. 30, 163–175 (1984)MathSciNetCrossRefMATHGoogle Scholar
- 38.Auslender, A.: Numerical Methods for Nondifferentiable Convex Optimization. Nonlinear Analysis and Optimization, pp. 102–126. Springer, Berlin (1987)MATHGoogle Scholar
- 39.Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Program. 62, 261–275 (1993)MathSciNetCrossRefMATHGoogle Scholar
- 40.Rauf, A.I., Fukushima, M.: Globally convergent BFGS method for nonsmooth convex optimization. J. Optim. Theory Appl. 104, 539–558 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 41.Wei, Z., Li, G., Qi, L.: New quasi-Newton methods for unconstrained optimization problems. Appl. Math. Comput. 175, 1156–1188 (2006)MathSciNetMATHGoogle Scholar
- 42.Yuan, G., Wei, Z., Li, G.: A modified Polak–Ribière–Polyak conjugate gradient algorithm for nonsmooth convex programs. J. Comput. Appl. Math. 255, 86–96 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 43.Yuan, G., Wei, Z., Lu, X.: A BFGS trust-region method for nonlinear equations. Computing 92, 317–333 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 44.Powell, M.J.D.: Convergence properties of a class of minimization algorithms. Nonlinear Program. 2, 1–27 (1975)MATHGoogle Scholar
- 45.Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. SIAM, Bangkok (2000)CrossRefMATHGoogle Scholar
- 46.Steihaug, T.: The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. 20, 626–637 (1983)MathSciNetCrossRefMATHGoogle Scholar
- 47.Di Pillo, G., Grippo, L., Lucidi, S.: A smooth method for the finite minimax problem. Math. Program. 60, 187–214 (1993)MathSciNetCrossRefMATHGoogle Scholar
- 48.Bagirov, A.: A method for minimization of quasidifferentiable functions. Optim. Methods Softw. 17, 31–60 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 49.Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)MathSciNetCrossRefMATHGoogle Scholar