Computational Optimization and Applications

, Volume 71, Issue 1, pp 193–219 | Cite as

Algorithms for positive semidefinite factorization

  • Arnaud VandaeleEmail author
  • François Glineur
  • Nicolas Gillis


This paper considers the problem of positive semidefinite factorization (PSD factorization), a generalization of exact nonnegative matrix factorization. Given an m-by-n nonnegative matrix X and an integer k, the PSD factorization problem consists in finding, if possible, symmetric k-by-k positive semidefinite matrices \(\{A^1,\ldots ,A^m\}\) and \(\{B^1,\ldots ,B^n\}\) such that \(X_{i,j}=\text {trace}(A^iB^j)\) for \(i=1,\ldots ,m\), and \(j=1,\ldots ,n\). PSD factorization is NP-hard. In this work, we introduce several local optimization schemes to tackle this problem: a fast projected gradient method and two algorithms based on the coordinate descent framework. The main application of PSD factorization is the computation of semidefinite extensions, that is, the representations of polyhedrons as projections of spectrahedra, for which the matrix to be factorized is the slack matrix of the polyhedron. We compare the performance of our algorithms on this class of problems. In particular, we compute the PSD extensions of size \(k=1+ \lceil \log _2(n) \rceil \) for the regular n-gons when \(n=5\), 8 and 10. We also show how to generalize our algorithms to compute the square root rank (which is the size of the factors in a PSD factorization where all factor matrices \(A^i\) and \(B^j\) have rank one) and completely PSD factorizations (which is the special case where the input matrix is symmetric and equality \(A^i=B^i\) is required for all i).


Positive semidefinite factorization Extended formulations Fast gradient method Coordinate descent method 


  1. 1.
    Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific, Singapore (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Burer, S., Monteiro, R.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. 95(2), 329–357 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cardano, G.: Ars Magna or the Rules of Algebra. Dover Publications, Mineola (1968)zbMATHGoogle Scholar
  4. 4.
    Cichocki, A., Phan, A.H.: Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. Fundam. Electron. E92–A(3), 708–721 (2009)CrossRefGoogle Scholar
  5. 5.
    Cichocki, A., Zdunek, R., Amari, S.i.: Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization. In: International Conference on Independent Component Analysis and Signal Separation, pp. 169–176. Springer (2007)Google Scholar
  6. 6.
    Fawzi, H., Gouveia, J., Parrilo, P., Robinson, R., Thomas, R.: Positive semidefinite rank. Math. Program. 153(1), 133–177 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fawzi, H., Gouveia, J., Robinson, R.: Rational and real positive semidefinite rank can be different. Oper. Res. Lett. 44(1), 59–60 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fiorini, S., Massar, S., Pokutta, S., Tiwary, H., de Wolf, R.: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pp. 95–106. ACM (2012)Google Scholar
  9. 9.
    Fiorini, S., Rothvoss, T., Tiwary, H.: Extended formulations for polygons. Discrete Comput. Geom. 48(3), 658–668 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gillis, N.: The why and how of nonnegative matrix factorization. In: Suykens, J., Signoretto, M., Argyriou, A. (eds.) Regularization, Optimization, Kernels, and Support Vector Machines‘. Chapman & Hall/CRC, Boca Raton (2014). Machine Learning and Pattern Recognition SeriesGoogle Scholar
  11. 11.
    Gillis, N., Glineur, F.: Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization. Neural Comput. 24(4), 1085–1105 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Goucha, A., Gouveia, J., Silva, P.: On ranks of regular polygons. SIAM J. Discrete Math. 31(4), 2612–2625 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gouveia, J., Parrilo, P., Thomas, R.: Lifts of convex sets and cone factorizations. Math. Oper. Res. 38(2), 248–264 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gouveia, J., Robinson, R., Thomas, R.: Worst-case results for positive semidefinite rank. Math. Program. 153(1), 201–212 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gribling, S., de Laat, D., Laurent, M.: Matrices with high completely positive semidefinite rank. Linear Algebra Appl. 513, 122–148 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear gauss-seidel method under convex constraints. Oper. Res. Lett. 26(3), 127–136 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ho, N.D.: Nonnegative matrix factorization algorithms and applications. Ph.D. thesis, Univertsité catholique de Louvain (2008)Google Scholar
  18. 18.
    Hsieh, C.J., Dhillon, I.: Fast coordinate descent methods with variable selection for non-negative matrix factorization. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1064–1072. ACM (2011)Google Scholar
  19. 19.
    Kaibel, V.: Extended formulations in combinatorial optimization. Optima 85, 2–7 (2011)Google Scholar
  20. 20.
    Kuang, D., Yun, S., Park, H.: SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering. J. Glob. Optim. 62(3), 545–574 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kubjas, K., Robeva, E., Robinson, R.: Positive semidefinite rank and nested spectrahedra. Linear Multilinear Algebra. 1–23 (2017)Google Scholar
  22. 22.
    Lee, T., Theis, D.O.: Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix. (2012). arXiv preprint arXiv:1203.3961
  23. 23.
    Löfberg, J.: Yalmip: A toolbox for modeling and optimization in matlab. In: IEEE International Symposium on Computer Aided Control Systems Design, 2004, pp. 284–289. IEEE (2004)Google Scholar
  24. 24.
    Nesterov, Y.: A method of solving a convex programming problem with convergence rate 0(1/k2). Sov. Math. Dokl. 27, 372–376 (1983)zbMATHGoogle Scholar
  25. 25.
    Prakash, A., Sikora, J., Varvitsiotis, A., Wei, Z.: Completely positive semidefinite rank. Math. Program. 1–35 (2016)Google Scholar
  26. 26.
    Shitov, Y.: The complexity of positive semidefinite matrix factorization. SIAM J. Optim. 27(3), 1898–1909 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1–4), 625–653 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Vandaele, A., Gillis, N., Glineur, F.: On the linear extension complexity of regular n-gons. Linear Algebra Appl. 521, 217–239 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Vandaele, A., Gillis, N., Glineur, F., Tuyttens, D.: Heuristics for exact nonnegative matrix factorization. J. Glob. Optim. 65(2), 369–400 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Vandaele, A., Gillis, N., Lei, Q., Zhong, K., Dhillon, I.: Efficient and non-convex coordinate descent for symmetric nonnegative matrix factorization. IEEE Trans. Signal Process. 64(21), 5571–5584 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wright, S.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43(3), 441–466 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Operational Research, Faculté PolytechniqueUniversité de MonsMonsBelgium
  2. 2.Center for Operations Research and EconometricsUniversité Catholique de LouvainLouvain-La-NeuveBelgium
  3. 3.ICTEAM InstituteUniversité Catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations