An iterative method for solving a bi-objective constrained portfolio optimization problem
Abstract
In this work, we consider the problem of portfolio optimization under cardinality and quantity constraints. We use the standard model of mean-variance in its bi-objective form which is presented here as a bi-objective quadratic programming problem under cardinality and quantity constraints. This problem is NP-hard, which is why the majority of methods proposed in the literature use metaheuristics for its resolution. In this paper, we propose an iterative method for solving constrained portfolio optimization problems. Experiments are performed with major market indices, such as the Hang Seng, DAX, FTSE, S&P 100, Nikkei, S&P 500 and Nasdaq using real-world datasets involving up to 2196 assets. Comparisons with two exact methods and a metaheuristic are performed. These results show that the new method allows to find efficient portfolio fronts in reasonable time.
Keywords
Cardinality and quantity constraints Cardinality portfolio selection Bi-objective programming Mixed integer programming Steepest descent method Pascoletti–Serafini methodMathematics Subject Classification
90C29 90C90 90C11 90B50 91B28Notes
References
- 1.Agarwal, S.: Portfolio selection theories: review, synthesis and critique. Asian J. Manag. 5(1), 1–7 (2014)Google Scholar
- 2.Altun, E., Tatlidil, H.: A Comparison of Portfolio Selection Models via Application on ISE 100 Index Data, vol. 1558, pp. 1438–1441 (2013)Google Scholar
- 3.Anagnostopoulos, K.P., Mamanis, G.: A portfolio optimization model with three objectives and discrete variables. Comput. Oper. Res. 37(7), 1285–1297 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. 41(11), 1069–1072 (1990)CrossRefGoogle Scholar
- 5.Bertsimas, D., Shioda, R.: Algorithm for cardinality-constrained quadratic optimization. Comput. Optim. Appl. 43(1), 1–22 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Beyhaghi, M., Hawley, J.P.: Modern portfolio theory and risk management: assumptions and unintended consequences. J. Sustain. Finance Invest. 3(1), 17–37 (2013)CrossRefGoogle Scholar
- 7.Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74(2), 121–140 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Borchers, B., Mitchell, J.E.: An improved branch and bound algorithm for mixed integer nonlinear programs. Comput. Oper. Res. 21(4), 359–367 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Cesarone, Francesco: http://w3.uniroma1.it/tardella/datasets.html. Accessed date 12 Jan 2017
- 10.Cesarone, F., Scozzari, A., Tardella, F.: Linear vs. quadratic portfolio selection models with hard real-world constraints. Comput. Manag. Sci. 1–26 (May 2014)Google Scholar
- 11.Chang, T.J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinality constrained portfolio optimisation. Comput. Oper. Res. 27(13), 1271–1302 (2000)zbMATHCrossRefGoogle Scholar
- 12.Chankong, V., Haimes, Y.Y.: Optimization-based methods for multiobjective decision-making—an overview. Large Scale Syst. Inf. Decis. Technol. 5(1), 1–33 (1983)MathSciNetzbMATHGoogle Scholar
- 13.Cura, T.: Particle swarm optimization approach to portfolio optimization. Nonlinear analysis: real world applications 10(4), 2396–2406 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Dai, Y.-H., Yuan, Y.-X.: Alternate minimization gradient method. IMA J. Numer. Anal. 23(3), 377–393 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.de Almeida, A.T., Vetschera, R.: A note on scale transformations in the PROMETHEE V method. Eur. J. Oper. Res. 219(1), 198–200 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Deng, G.-F., Lin, W.-T., Lo, C.-C.: Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Syst. Appl. 39(4), 4558–4566 (2012)CrossRefGoogle Scholar
- 17.Di Gaspero, L., Di Tollo, G., Roli, A., Schaerf, A.: Hybrid metaheuristics for constrained portfolio selection problems. Quant. Finance 11(10), 1473–1487 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization, vol. 436. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
- 19.Elton, E.J., Gruber, M.J., Brown, S.J., Goetzmann, W.N.: Modern Portfolio Theory and Investment Analysis. Wiley, New York (2009)Google Scholar
- 20.Fieldsend, J.E., Matatko, J., Peng, M.: Cardinality constrained portfolio optimisation. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) Intelligent Data Engineering and Automated Learning IDEAL 2004, vol. 3177, pp. 788–793. Springer Berlin Heidelberg, Berlin (2004)CrossRefGoogle Scholar
- 21.Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. 106(2), 225–236 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Fusai, G., Roncoroni, A.: Implementing Models in Quantitative Finance: Methods and Cases. Springer, New York (2007)zbMATHGoogle Scholar
- 23.Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22(3), 618–630 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Gulpinar, N., An, L.T.H., Moeini, M.: Robust investment strategies with discrete asset choice constraints using DC programming. Optimization 59(1), 45–62 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Haimes, Y.Y.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1(3), 296–297 (1971)MathSciNetzbMATHGoogle Scholar
- 26.Haqiqi, K.F., Kazemi, T.: Ant colony optimization approach to portfolio optimization. In: Proceedings of the 3rd International Conference on Financial Theory and Engineering, pp. 292–296 (2012)Google Scholar
- 27.Jobst, N.J., Horniman, M.D., Lucas, C.A., Mitra, G.: Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. Quant. Finance 1(5), 489–501 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Lee, E.K., Mitchell, J.E.: Computational experience of an interior-point SQP algorithm in a parallel branch-and-bound framework. Proc. High Perform. Optim. Tech. 1997, 97–108 (1997)Google Scholar
- 29.Li, B., Hoi, S.C.H.: Online portfolio selection: a survey. ACM Comput. Surv. (CSUR) 46(3), 35 (2014)zbMATHGoogle Scholar
- 30.Li, D., Sun, X., Wang, J.: Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection. Math. Finance 16(1), 83–101 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 31.Li, J., Xu, J.: Multi-objective portfolio selection model with fuzzy random returns and a compromise approach-based genetic algorithm. Inf. Sci. 220 (January 2013)Google Scholar
- 32.Lwin, K., Rong, Q.: A hybrid algorithm for constrained portfolio selection problems. Appl. Intell. 39(2), 251–266 (2013)CrossRefGoogle Scholar
- 33.Lwin, K., Rong, Q., Kendall, G.: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization. Appl. Soft Comput. 24, 757–772 (2014)CrossRefGoogle Scholar
- 34.Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)Google Scholar
- 35.Mavrotas, G., Pechak, O.: Combining mathematical programming and Monte Carlo simulation to deal with uncertainty in energy project portfolio selection. In: Cavallaro, F. (ed.) Assessment and Simulation Tools for Sustainable Energy Systems, Number 129 in Green Energy and Technology, pp. 333–356. Springer, London (2013)CrossRefGoogle Scholar
- 36.Miettinen, K.: Nonlinear multiobjective optimization, volume 12 of international series in operations research and management science (1999)Google Scholar
- 37.Moral-Escudero, R., Ruiz-Torrubiano, R., Suarez, A.: Selection of optimal investment portfolios with cardinality constraints. In: IEEE Congress on Evolutionary Computation, 2006. CEC 2006, pp. 2382–2388. IEEE (2006)Google Scholar
- 38.Murray, W., Shek, H.: A local relaxation method for the cardinality constrained portfolio optimization problem. Comput. Optim. Appl. 53(3), 681–709 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.OR-LIBRARY. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html. Accessed date: 21 July 2016
- 40.Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42(4), 499–524 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
- 41.Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank Finance 26(7), 1443–1471 (2002)CrossRefGoogle Scholar
- 42.Ruiz-Torrubiano, R., Suarez, A.: Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constraints. IEEE Comput. Intell. Mag. 5(2), 92–107 (2010)CrossRefGoogle Scholar
- 43.Ruiz-Torrubiano, R., Suárez, A.: A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs. Appl. Soft Comput. 36, 125–142 (2015)CrossRefGoogle Scholar
- 44.Shaw, D.X., Liu, S., Kopman, L.: Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optim. Methods Softw. 23(3), 411–420 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 45.Smith, P., Ferringer, M., Kelly, R., Min, I.: Budget-constrained portfolio trades using multiobjective optimization. Syst. Eng. 15(4), 461–470 (2012)CrossRefGoogle Scholar
- 46.Soleimani, H., Golmakani, H.R., Salimi, M.H.: Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Syst. Appl. 36(3), 5058–5063 (2009)CrossRefGoogle Scholar
- 47.Steuer, R.E., Qi, Y., Hirschberger, M.: Developments in multi-attribute portfolio selection. Multiple Criteria Decis. Mak. 5, 251–262 (2006)Google Scholar
- 48.Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound algorithm for mixed-integer conic quadratic programs. INFORMS J. Comput. 20(3), 438–450 (2008)MathSciNetzbMATHCrossRefGoogle Scholar