Advertisement

Fusion of medical images using deep belief networks

  • Manjit Kaur
  • Dilbag SinghEmail author
Article
  • 20 Downloads

Abstract

Image fusion plays a significant role in various computer vision applications. However, designing an efficient image fusion technique is still a challenging task. In this paper, a novel deep belief networks based image fusion framework is proposed to improve the performance of the image fusion process further. We have initially, evaluated the fusion dataset by applying various feature extraction techniques. Thereafter, features selection techniques are applied to select potential features. Finally, the image fusion machine learning model is built by using a deep belief network model. Extensive experiments reveal that the proposed technique outperforms existing image fusion techniques.

Keywords

Image fusion Deep belief networks Medical images Fuzzy rules 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    Ouerghi, H., Mourali, O., Zagrouba, E.: Non-subsampled shearlet transform based MRI and PET brain image fusion using simplified pulse coupled neural network and weight local features in YIQ colour space. IET Image Process. 12(10), 1873–1880 (2018)CrossRefGoogle Scholar
  2. 2.
    Lee, S.L., Zare, M.R., Muller, H.: Late fusion of deep learning and handcrafted visual features for biomedical image modality classification. IET Image Process. 13(2), 382–391 (2019)CrossRefGoogle Scholar
  3. 3.
    Singh, D., Garg, D., Singh, H.: Efficient landsat image fusion using fuzzy and stationary discrete wavelet transform. Imaging Sci. J. 65(2), 108–114 (2017)CrossRefGoogle Scholar
  4. 4.
    Singh, D., Kumar, V.: Dehazing of remote sensing images using improved restoration model based dark channel prior. Imaging Sci. J. 65(5), 282–292 (2017)CrossRefGoogle Scholar
  5. 5.
    Venkatrao, P.H., Damodar, S.S.: Hwfusion: holoentropy and sp-whale optimisation-based fusion model for magnetic resonance imaging multimodal image fusion. IET Image Process. 12(4), 572–581 (2018)CrossRefGoogle Scholar
  6. 6.
    Nandal, A., Bhaskar, V.: Fuzzy enhanced image fusion using pixel intensity control. IET Image Process. 12(3), 453–464 (2018)CrossRefGoogle Scholar
  7. 7.
    Nair, R.R., Singh, T.: Multi-sensor medical image fusion using pyramid-based DWT: a multi-resolution approach. IET Image Process. 13(9), 1447–1459 (2019)CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Li, M., Zhong, G., Li, J., Lu, Y.: Circular trace transform and its PCA-based fusion features for image representation. IET Image Process. 12(10), 1797–1806 (2018)CrossRefGoogle Scholar
  9. 9.
    Yelampalli, P.K.R., Nayak, J., Gaidhane, V.H.: Daubechies wavelet-based local feature descriptor for multimodal medical image registration. IET Image Process. 12(10), 1692–1702 (2018)CrossRefGoogle Scholar
  10. 10.
    Chang, L., Feng, X., Zhu, X., Zhang, R., He, R., Xu, C.: CT and MRI image fusion based on multiscale decomposition method and hybrid approach. IET Image Process. 13(1), 83–88 (2019)CrossRefGoogle Scholar
  11. 11.
    Na, Y., Zhao, L., Yang, Y., Ren, M.: Guided filter-based images fusion algorithm for CT and MRI medical images. IET Image Process. 12(1), 138–148 (2018)CrossRefGoogle Scholar
  12. 12.
    Pannu, H.S., Singh, D., Malhi, A.K.: Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring. Neural Comput. Appl. 31(7), 2195–2205 (2017)CrossRefGoogle Scholar
  13. 13.
    Singh, D., Kumar, V.: Modified gain intervention filter based dehazing technique. J. Mod. Opt. 64(20), 2165–2178 (2017)CrossRefGoogle Scholar
  14. 14.
    Xiang, F., Jian, Z., Liang, P., Xueqiang, G.: Robust image fusion with block sparse representation and online dictionary learning. IET Image Process. 12(3), 345–353 (2018)CrossRefGoogle Scholar
  15. 15.
    Singh, S., Anand, R.S., Gupta, D.: Ct and mr image information fusion scheme using a cascaded framework in ripplet and NSST domain. IET Image Process. 12(5), 696–707 (2018)CrossRefGoogle Scholar
  16. 16.
    Singh, D., Kumar, V.: Dehazing of remote sensing images using fourth-order partial differential equations based trilateral filter. IET Comput. Vis. 12(2), 208–219 (2017)CrossRefGoogle Scholar
  17. 17.
    Singh, D., Kumar, V.: Comprehensive survey on haze removal techniques. Multimed. Tools Appl. 77(8), 9595–9620 (2018)CrossRefGoogle Scholar
  18. 18.
    Xing, C., Wang, Z., Ouyang, Q., Dong, C.: Method based on bitonic filtering decomposition and sparse representation for fusion of infrared and visible images. IET Image Process. 12(12), 2300–2310 (2018)CrossRefGoogle Scholar
  19. 19.
    Wang, J., Li, X., Zhang, Y., Zhang, X.: Adaptive decomposition method for multi-modal medical image fusion. IET Image Process. 12(8), 1403–1412 (2018)CrossRefGoogle Scholar
  20. 20.
    Lewis, J.J., OCallaghan, R.J., Nikolov, S.G., Bull, D.R., Canagarajah, N.: Pixel- and region-based image fusion with complex wavelets, Inf. Fus. 8(2), 119–130, Special Issue on Image Fusion: Advances in the State of the Art (2007)CrossRefGoogle Scholar
  21. 21.
    Liu, Y., Chen, X., Wang, Z., Wang, Z.J., Ward, R.K., Wang, X.: Deep learning for pixel-level image fusion: recent advances and future prospects. Inf. Fus. 42, 158–173 (2018)CrossRefGoogle Scholar
  22. 22.
    Shahdoosti, H.R., Mehrabi, A.: Multimodal image fusion using sparse representation classification in tetrolet domain. Digital Signal Process. 79, 9–22 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhang, C., Yi, L., Feng, Z., Gao, Z., Jin, X., Yan, D.: Multimodal image fusion with adaptive joint sparsity model. J. Electron. Imaging 28(1), 013043 (2019)Google Scholar
  24. 24.
    Tang, H., Xiao, B., Li, W., Wang, G.: Pixel convolutional neural network for multi-focus image fusion. Inf. Sci. 433–434, 125–141 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Xia, X., Yao, Y., Yin, L., Wu, S., Li, H., Yang, Z.: Multi-focus image fusion based on probability filtering and region correction. Signal Process. 153, 71–82 (2018)CrossRefGoogle Scholar
  26. 26.
    Aslantas, V., Toprak, A.N.: A pixel based multi-focus image fusion method. Opt. Commun. 332, 350–358 (2014)CrossRefGoogle Scholar
  27. 27.
    Singh, D., Kumar, V.: A novel dehazing model for remote sensing images. Comput. Electr. Eng. 69, 14–27 (2018)CrossRefGoogle Scholar
  28. 28.
    Sreeja, P., Hariharan, S.: An improved feature based image fusion technique for enhancement of liver lesions. Biocybern. Biomed. Eng. 38(3), 611–623 (2018)CrossRefGoogle Scholar
  29. 29.
    Huang, M., Shu, H., Ma, Y., Gong, Q.: Content-based image retrieval technology using multi-feature fusion. Optik—Int. J. Light Electron Opt. 126(19), 2144–2148 (2015)CrossRefGoogle Scholar
  30. 30.
    Rastghalam, R., Pourghassem, H.: Breast cancer detection using mrf-based probable texture feature and decision-level fusion-based classification using hmm on thermography images. Pattern Recognit. 51, 176–186 (2016)CrossRefGoogle Scholar
  31. 31.
    Singh, D., Kumar, V.: Single image defogging by gain gradient image filter. Sci. China Inf. Sci. 62(7), 07910 (2008).  https://doi.org/10.1007/s11432-017-9433-4 MathSciNetCrossRefGoogle Scholar
  32. 32.
    Singh, D., Kumar, V., Kaur, M.: Single image dehazing using gradient channel prior. Appl. Intell. (2019).  https://doi.org/10.1007/s10489-019-01504-6 CrossRefGoogle Scholar
  33. 33.
    Singh, D., Kumar, V.: Single image haze removal using integrated dark and bright channel prior. Mod. Phys. Lett. B 32(04), 1850051 (2018)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Salakhutdinov, V., Andriy Mnih, R., Hinton, G.: Restricted Bol tzmann machines for collaborative filtering. In: Proceedings of the 24th international conference on Machine learning, pp. 791-798. ACM, New York, NY (2007)Google Scholar
  35. 35.
    Wang, L., Xia, X., Cao, J., Liu, X.: Modeling and predicting remanufacturing time of equipment using deep belief networks. Clust. Comput. 22(Suppl 2), 2677–2688 (2017)Google Scholar
  36. 36.
    Wang, L., Zhang, T., Xu, J., Yu, J., Wang, X., Zhang, H., Zhao, Z.: An approach of improved dynamic deep belief nets modeling for algae bloom prediction. Clust. Comput. (2017).  https://doi.org/10.1007/s10586-017-1460-9 CrossRefGoogle Scholar
  37. 37.
    Nauman, M., Tanveer, T.A., Khan, S., Syed, T.A.: Deep neural architectures for large scale android malware analysis. Clust. Comput. 21(1), 569–588 (2018)CrossRefGoogle Scholar
  38. 38.
    Karthik, S., Murthy, K.S.: Deep belief network based approach to recognize handwritten kannada characters using distributed average of gradients. Clust. Comput. 22(Suppl 2), 4673–4681 (2018)Google Scholar
  39. 39.
    Saritha, R.R., Paul, V., Kumar, P.G.: Content based image retrieval using deep learning process. Clust. Comput. 22(Suppl 2), 4187–4200 (2018)Google Scholar
  40. 40.
    Qing, C., Ruan, J., Xu, X., Ren, J., Zabalza, J.: Spatial-spectral classification of hyperspectral images: a deep learning framework with markov random fields based modelling. IET Image Process. 13(2), 235–245 (2019)CrossRefGoogle Scholar
  41. 41.
    Alaql, O., Lu, C.: No-reference image quality metric based on multiple deep belief networks. IET Image Process. 13(8), 1321–1327 (2019)CrossRefGoogle Scholar
  42. 42.
    Barman, A., Dutta, P.: Influence of shape and texture features on facial expression recognition. IET Image Process. 13(8), 1349–1363 (2019)CrossRefGoogle Scholar
  43. 43.
    Qiao, J., Wang, G., Li, W., Li, X.: A deep belief network with plsr for nonlinear system modeling. Neural Netw. 104, 68–79 (2018)CrossRefGoogle Scholar
  44. 44.
    Keyvanrad, M.A., Pezeshki, M., Homayounpour, M.A.: Deep belief networks for image denoising, arXiv preprint arXiv:1312.6158 (2013)
  45. 45.
    Pannu, H.S., Singh, D., Malhi, A.K.: Improved particle swarm optimization based adaptive neuro-fuzzy inference system for benzene detection. Clean-Soil Air Water 46(5), 1700162 (2018)CrossRefGoogle Scholar
  46. 46.
    Sreeja, P., Hariharan, S.: Three-dimensional fusion of clustered and classified features for enhancement of liver and lesions from abdominal radiology images. IET Image Process. 13(10), 1680–1685 (2019)CrossRefGoogle Scholar
  47. 47.
    Singh, D., Kaur, M., Singh, H.: Remote sensing image fusion using fuzzy logic and gyrator transform. Remote Sens. Lett. 9(10), 942–951 (2018)CrossRefGoogle Scholar
  48. 48.
    Singh, D., Kumar, V.: Dehazing of outdoor images using notch based integral guided filter. Multimed. Tools Appl. 77(20), 27363–27386 (2018)CrossRefGoogle Scholar
  49. 49.
    Singh, D., Kumar, V.: Defogging of road images using gain coefficient-based trilateral filter. J. Electron. Imaging 27(1), 013004 (2018)CrossRefGoogle Scholar
  50. 50.
    Kaur, M., Kumar, V.: Fourier-mellin moment-based intertwining map for image encryption. Mod. Phys. Lett. B 32(09), 1850115 (2018)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Kaur, M., Kumar, V.: Colour image encryption technique using differential evolution in non-subsampled contourlet transform domain. IET Image Process. 12(7), 1273–1283 (2018)CrossRefGoogle Scholar
  52. 52.
    Prakash, O., Park, C.M., Khare, A., Jeon, M., Gwak, J.: Multiscale fusion of multimodal medical images using lifting scheme based biorthogonal wavelet transform. Optik 182, 995–1014 (2019)CrossRefGoogle Scholar
  53. 53.
    Xydeas, C., Petrovic, V.: Objective image fusion performance measure. Electron. Lett. 36(4), 308–309 (2000)CrossRefGoogle Scholar
  54. 54.
    Singh, D., Kumar, V.: Image dehazing using moore neighborhood-based gradient profile prior. Signal Process. 70, 131–144 (2019)Google Scholar
  55. 55.
    Singh, D., Kumar, V.: A comprehensive review of computational dehazing techniques. Arch. Comput. Methods Eng. 26(5), 1395–1413 (2018)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Kaur, M., Kumar, V.: Efficient image encryption method based on improved lorenz chaotic system. Electron. Lett. 54(9), 562–564 (2018)CrossRefGoogle Scholar
  57. 57.
    Kaur, M., Kumar, V.: Adaptive differential evolution-based lorenz chaotic system for image encryption. Arab. J. Sci. Eng. 43(12), 8127–8144 (2018)CrossRefGoogle Scholar
  58. 58.
    Mehboob, F., Abbas, M., Jiang, R., Rauf, A., Khan, S.A., Rehman, S.: Trajectory based vehicle counting and anomalous event visualization in smart cities. Clust. Comput. 21(1), 443–452 (2018)CrossRefGoogle Scholar
  59. 59.
    Wen, Y.: Remote sensing image land type data mining based on quest decision tree. Clust. Comput. (2018).  https://doi.org/10.1007/s10586-018-1866-z CrossRefGoogle Scholar
  60. 60.
    He, H., Liu, X., Shen, Y.: Relative radiometric correction of high-resolution remote sensing images based on feature category. Clust. Comput. (2018).  https://doi.org/10.1007/s10586-017-1526-8 CrossRefGoogle Scholar
  61. 61.
    Zhang, L., Zhang, L., Liu, S., Zhou, J., Papavassiliou, C.: Low-level control technology of micro autonomous underwater vehicle based on intelligent computing. Clust. Comput. (2018).  https://doi.org/10.1007/s10586-018-1909-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer and Communication EngineeringSchool of Computing and Information Technology, Manipal University JaipurJaipur India
  2. 2.Department of Computer Science and EngineeringSchool of Computing and Information Technology, Manipal University JaipurJaipur India

Personalised recommendations