Advertisement

Detection of premature ventricular contraction (PVC) using linear and nonlinear techniques: an experimental study

  • Mohammad Hadi Mazidi
  • Mohammad EshghiEmail author
  • Mohammad Reza Raoufy
Article

Abstract

Cardiovascular diseases are identified as one of the most dangerous diseases and the major causes of the death around the world. One of the most common cardiac arrhythmias that have always been a concern for cardiologists is premature ventricular contractions. Regarding its abundance among all ages, prediction and diagnosis of this type of arrhythmia has particular importance. One of the most common, most non-invasive; and the least costly method for investigation of heart diseases is to record and analyze the electrocardiogram (ECG) signals. The purpose of this study is to analyze the ECG in order to classify premature ventricular contraction heartbeats. Having proposed a new technique based on evolutionary optimization for R peak detection, several methodologies, such as morphological assessment, polynomial curve fitting, discrete wavelet transform, and nonlinear analysis, are employed to extract features from ECG signal. Support vector machine (SVM) classifier with a linear kernel is used to detect the normal and PVC heart rates. In order to evaluate the proposed method, in addition to the MIT-BIH database, the experimental data is used and the methodology performance is proved for both databases. Finally, using different feature selection criteria such as fisher distinction, minimal-redundancy maximum-relevance, and SVM-based recursive feature elimination with correlation bias reduction, six features are introduced as best ones. The proposed PVC detection algorithm acquires the overall detection accuracy of 99.78%, with the sensitivity of 99.91% and specificity of 99.37%, for MIT-BIH dataset.

Keywords

Premature ventricular contraction (PVC) Electrocardiogram (ECG) Discrete wavelet transform (DWT) Nonlinear analysis Support vector machine (SVM) 

Notes

Acknowledgements

Authors are grateful to Dr. Ahmad Masoudi, Head of the Cardiac Intensive Care Unit, Qeshm Hospital, Qeshm Island, Iran, for his clinical help and outstanding suggestions to improve the quality of this manuscript.

References

  1. 1.
    Asl, B.M., Setarehdan, S.K., Mohebbi, M.: Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif. Intell. Med. 44(1), 51–64 (2008)CrossRefGoogle Scholar
  2. 2.
    Ge, D., Srinivasan, N., Krishnan, S.M.: Cardiac arrhythmia classification using autoregressive modeling. Biomed. Eng. Online 1(1), 5 (2002)CrossRefGoogle Scholar
  3. 3.
    Acharya, U.R., Joseph, K.P., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a review. Med. Biol. Eng. Comput. 44(12), 1031–1051 (2006)CrossRefGoogle Scholar
  4. 4.
    Berkaya, S.K., Uysal, A.K., Gunal, E.S., Ergin, S., Gunal, S., Gulmezoglu, M.B.: A survey on ECG analysis. Biomed. Signal Process. Control 43, 216–235 (2018)CrossRefGoogle Scholar
  5. 5.
    Chen, Z., Xu, H., Luo, J., Zhu, T., Meng, J.: Low-power perceptron model based ECG processor for premature ventricular contraction detection. Microprocess. Microsyst. 59, 29–36 (2018)CrossRefGoogle Scholar
  6. 6.
    Ghorbanian, P., Ghaffari, A., Jalali, A., Nataraj, C.: Heart arrhythmia detection using continuous wavelet transform and principal component analysis with neural network classifier. In: In Computing in Cardiology, pp. 669–672. IEEE (2010)Google Scholar
  7. 7.
    Melgani, F., Bazi, Y.: Detecting premature ventricular contractions in ECG signals with Gaussian processes. In: Computers in cardiology, pp. 237–240. IEEE (2008)Google Scholar
  8. 8.
    Sayadi, O., Shamsollahi, M.B., Clifford, G.D.: Robust detection of premature ventricular contractions using a wave-based Bayesian framework. IEEE Trans. Biomed. Eng. 57(2), 353–362 (2010)CrossRefGoogle Scholar
  9. 9.
    Kumar, A., Singh, M.: Ischemia detection using isoelectric energy function. Comput. Biol. Med. 68, 76–83 (2016)CrossRefGoogle Scholar
  10. 10.
    Zhou, F.Y., Jin, L.P., Dong, J.: Premature ventricular contraction detection combining deep neural networks and rules inference. Artif. Intell. Med. 79, 42–51 (2017)CrossRefGoogle Scholar
  11. 11.
    de Chazal, P., Reilly, R.B: Automatic classification of ECG beats using waveform shape and heart beat interval features. In: 2003 IEEE international conference on acoustics, speech, and signal processing. Proceedings. (ICASSP’03), Vol. 2, pp. II–269. IEEE (2003)Google Scholar
  12. 12.
    Prakash, S., Sangeetha, K., Ramkumar, N.: An optimal criterion feature selection method for prediction and effective analysis of heart disease. Clust. Comput. (2018).  https://doi.org/10.1007/s10586-017-1530-z Google Scholar
  13. 13.
    Gokulnath, C.B., Shantharajah, S.P.: An optimized feature selection based on genetic approach and support vector machine for heart disease. Clust. Comput. (2018).  https://doi.org/10.1007/s10586-018-2416-4 Google Scholar
  14. 14.
    Allami, R.: Premature ventricular contraction analysis for real-time patient monitoring. Biomed. Signal Process. Control 47, 358–365 (2019)CrossRefGoogle Scholar
  15. 15.
    Sayadi, O., Shamsollahi, M.B.: ECG denoising and compression using a modified extended Kalman filter structure. IEEE Trans. Biomed. Eng. 55(9), 2240–2248 (2008)CrossRefGoogle Scholar
  16. 16.
    Zarei, R., He, J., Huang, G., Zhang, Y.: Effective and efficient detection of premature ventricular contractions based on variation of principal directions. Digit. Signal Process. 50, 93–102 (2016)CrossRefGoogle Scholar
  17. 17.
    Jung, Y., Kim, H.: Detection of PVC by using a wavelet-based statistical ECG monitoring procedure. Biomed. Signal Process. Control 36, 176–182 (2017)CrossRefGoogle Scholar
  18. 18.
    Bhoi, A.K., Sherpa, K.S., Khandelwal, B.: Arrhythmia and ischemia classification and clustering using QRS-ST-T (QT) analysis of electrocardiogram. Clust. Comput. 21(1), 1033–1044 (2018)CrossRefGoogle Scholar
  19. 19.
    Inan, O.T., Giovangrandi, L., Kovacs, G.T.: Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features. IEEE Trans. Biomed. Eng. 53(12), 2507–2515 (2006)CrossRefGoogle Scholar
  20. 20.
    Ince, T., Kiranyaz, S., Gabbouj, M.: Automated patient-specific classification of premature ventricular contractions. In: 30th Annual international conference of the IEEE Engineering in Medicine and Biology Society, pp. 5474–5477. EMBS (2008)Google Scholar
  21. 21.
    Ebrahimzadeh, A., Khazaee, A.: Detection of premature ventricular contractions using MLP neural networks: a comparative study. Measurement 43(1), 103–112 (2010)CrossRefGoogle Scholar
  22. 22.
    Sotomi, Y., Iwakura, K., Higuchi, Y., Abe, K., Yoshida, J., Masai, T., Fujii, K.: The impact of systemic vascular resistance on the accuracy of the FloTrac/Vigileo™ system in the perioperative period of cardiac surgery: a prospective observational comparison study. J. Clin. Monit. Comput. 27(6), 639–646 (2013)CrossRefGoogle Scholar
  23. 23.
    Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8(5), 437–448 (2013)CrossRefGoogle Scholar
  24. 24.
    Attin, M., Feld, G., Lemus, H., Najarian, K., Shandilya, S., Wang, L., Sabouriazad, P., Lin, C.D.: Electrocardiogram characteristics prior to in-hospital cardiac arrest. J. Clin. Monit. Comput. 29(3), 385–392 (2015)CrossRefGoogle Scholar
  25. 25.
    Hayashi, H., Miyamoto, A., Ishida, K., Yoshino, T., Sugimoto, Y., Ito, M., Horie, M.: Prevalence and QT interval of early repolarization in a hospital-based population. J. Arrhythm. 26(2), 127–133 (2010)CrossRefGoogle Scholar
  26. 26.
    Mukherjee, A., Ghosh, K.K.: An efficient wavelet analysis for ECG signal processing. In: 2012 International Conference on Informatics, Electronics & Vision (ICIEV), pp. 411–415. IEEE (2012)Google Scholar
  27. 27.
    Malakhov, A.I., Schookin, S.I., Ivancov, V.I., Tikhomirov, A.N.: A combined algorithm for identification and differentiation of atrial flutter and atrial fibrillation based on ECG analysis. Biomed. Eng. 47(1), 14–17 (2013)CrossRefGoogle Scholar
  28. 28.
    Boquete, L., Ascariz, J.M.R., Cantos, J., Barea, R., Miguel, J.M., Ortega, S., Peixoto, N.: A portable wireless biometric multi-channel system. Measurement 45(6), 1587–1598 (2012)CrossRefGoogle Scholar
  29. 29.
    Jindapetch, N., Chewae, S., Phukpattaranont, P.: FPGA implementations of an ADALINE adaptive filter for power-line noise cancellation in surface electromyography signals. Measurement 45(3), 405–414 (2012)CrossRefGoogle Scholar
  30. 30.
    Rebergen, D.J., Nagaraj, S.B., Rosenthal, E.S., Bianchi, M.T., van Putten, M.J., Westover, M.B.: ADARRI: a novel method to detect spurious R-peaks in the electrocardiogram for heart rate variability analysis in the intensive care unit. J. Clin. Monit. Comput. 32(1), 53–61 (2018)CrossRefGoogle Scholar
  31. 31.
    Mahmoud, S.A., Bamakhramah, A., Al-Tunaiji, S.A.: Low-noise low-pass filter for ECG portable detection systems with digitally programmable range. Circuits Syst. Signal Process. 32(5), 2029–2045 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zou, Y., Han, J., Xuan, S., Huang, S., Weng, X., Fang, D., Zeng, X.: An energy-efficient design for ECG recording and R-peak detection based on wavelet transform. IEEE Trans. Circuits Syst. II 62(2), 119–123 (2015)CrossRefGoogle Scholar
  33. 33.
    Alonso-Atienza, F., Morgado, E., Fernandez-Martinez, L., García-Alberola, A., Rojo-Alvarez, J.L.: Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans. Biomed. Eng. 61(3), 832–840 (2014)CrossRefGoogle Scholar
  34. 34.
    Liu, L., Chen, L., Zhang, Y.H., Wei, L., Cheng, S., Kong, X., Zheng, M., Huang, T., Cai, Y.D.: Analysis and prediction of drug–drug interaction by minimum redundancy maximum relevance and incremental feature selection. J. Biomol. Struct. Dyn. 35(2), 312–329 (2017)CrossRefGoogle Scholar
  35. 35.
    Duan, K.B., Rajapakse, J.C., Wang, H., Azuaje, F.: Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans. Nanobiosci. 4(3), 228–234 (2005)CrossRefGoogle Scholar
  36. 36.
    Koley, B., Dey, D.: An ensemble system for automatic sleep stage classification using single channel EEG signal. Comput. Biol. Med. 42(12), 1186–1195 (2012)CrossRefGoogle Scholar
  37. 37.
    Hidalgo-Muñoz, A.R., López, M.M., Santos, I.M., Pereira, A.T., Vázquez-Marrufo, M., Galvao-Carmona, A., Tomé, A.M.: Application of SVM-RFE on EEG signals for detecting the most relevant scalp regions linked to affective valence processing. Expert Syst. Appl. 40(6), 2102–2108 (2013)CrossRefGoogle Scholar
  38. 38.
    Ding, X., Yang, Y., Stein, E.A., Ross, T.J.: Multivariate classification of smokers and nonsmokers using SVM-RFE on structural MRI images. Hum. Brain Mapp. 36(12), 4869–4879 (2015)CrossRefGoogle Scholar
  39. 39.
    Kim, E.Y., Lee, M.Y., Kim, S.H., Ha, K., Kim, K.P., Ahn, Y.M.: Diagnosis of major depressive disorder by combining multimodal information from heart rate dynamics and serum proteomics using machine-learning algorithm. Prog. Neuropsychopharmacol. Biol. Psychiatry 76, 65–71 (2017)CrossRefGoogle Scholar
  40. 40.
    Tang, Y., Zhang, Y.Q., Huang, Z.: Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 4(3), 365–381 (2007)CrossRefGoogle Scholar
  41. 41.
    Yan, K., Zhang, D.: Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuators B 212, 353–363 (2015)CrossRefGoogle Scholar
  42. 42.
    Futou, L., Liang, L.: Decision making based on grey model and support vector machine. Clust. Comput. (2018).  https://doi.org/10.1007/s10586-018-2227-7 Google Scholar
  43. 43.
    Jafarian, K., Mobin, M., Jafari-Marandi, R., Rabiei, E.: Misfire and valve clearance faults detection in the combustion engines based on a multi-sensor vibration signal monitoring. Measurement 128, 527–536 (2018)CrossRefGoogle Scholar
  44. 44.
    Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohammad Hadi Mazidi
    • 1
  • Mohammad Eshghi
    • 1
    Email author
  • Mohammad Reza Raoufy
    • 2
  1. 1.Department of Electronics, Faculty of Electrical EngineeringShahid Beheshti UniversityTehranIran
  2. 2.Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations