Advertisement

A comprehensive and systematic review of the load balancing mechanisms in the Internet of Things

  • Behrouz PourgheblehEmail author
  • Vahideh Hayyolalam
Article
  • 45 Downloads

Abstract

The Internet of Things (IoT) is a network of different objects that refers to an environment in which intelligent devices around us can connect to the Internet and exchange information together. A large number of generated events from IoT objects causes overhead on the network. Therefore, to optimize the usage of IoT network, it is essential to provide solutions for network problems including scalability, routing, reliability, security, energy conservation, network lifetime, congestion, heterogeneity, and quality of service (QoS). In this regard, load balancing as an efficient method takes a significant role in distributing loads among different routes. Imbalance traffic load across the network causes high latency in some routes and loss of data packets and decreases packet delivery ratio. Although load balancing has a critical importance in the IoT, there is still a lack of an organized and comprehensive review about analyzing and examining its remarkable methods. Therefore, this paper by adopting a systematic manner aims to address this gap. In this research, the load balancing methods are categorized into two main categories including centralized and distributed and their merits and demerits are specified. Moreover, vital parameters, the challenges, and open issues in this scope are also discussed. Thus, future authors will be able to develop more effective load balancing mechanisms.

Keywords

Internet of Things Load balancing IoT Systematic review SLR Survey 

Notes

References

  1. 1.
    Atzori, L., Iera, A., Morabito, G.: Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Netw. 56, 122–140 (2017)CrossRefGoogle Scholar
  2. 2.
    Asghari, P., Rahmani, A.M., Javadi, H.H.S.: Internet of Things applications: a systematic review. Comput. Netw. 148, 241–261 (2019)CrossRefGoogle Scholar
  3. 3.
    Da Xu, L., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Ind. Inf. 10, 2233–2243 (2014)CrossRefGoogle Scholar
  4. 4.
    Nguyen, T.D., Khan, J.Y., Ngo, D.T.: Energy harvested roadside IEEE 802.15. 4 wireless sensor networks for IoT applications. Ad Hoc Netw. 56, 109–121 (2017)CrossRefGoogle Scholar
  5. 5.
    Shaikh, F.K., Zeadally, S., Exposito, E.: Enabling technologies for green internet of things. IEEE Syst. J. 11, 983–994 (2017)CrossRefGoogle Scholar
  6. 6.
    Farris, I., Orsino, A., Militano, L., Iera, A., Araniti, G.: Federated IoT services leveraging 5G technologies at the edge. Ad Hoc Netw. 68, 58–69 (2018)CrossRefGoogle Scholar
  7. 7.
    Bello, O., Zeadally, S., Badra, M.: Network layer inter-operation of Device-to-Device communication technologies in Internet of Things (IoT). Ad Hoc Netw. 57, 52–62 (2017)CrossRefGoogle Scholar
  8. 8.
    Pourghebleh, B., Navimipour, N.J.: Data aggregation mechanisms in the Internet of things: a systematic review of the literature and recommendations for future research. J. Netw. Comput. Appl. 97, 23–34 (2017).  https://doi.org/10.1016/j.jnca.2017.08.006 CrossRefGoogle Scholar
  9. 9.
    Hayyolalam, V., Kazem, A.A.P.: A systematic literature review on QoS-aware service composition and selection in cloud environment. J. Netw. Comput, Appl (2018)CrossRefGoogle Scholar
  10. 10.
    Jian, C., Li, M., Kuang, X.: Edge cloud computing service composition based on modified bird swarm optimization in the internet of things. Clust. Comput. (2018).  https://doi.org/10.1007/s10586-017-1630-9 Google Scholar
  11. 11.
    Wan, S., Zhao, Y., Wang, T., Gu, Z., Abbasi, Q.H., Choo, K.-K.R.: Multi-dimensional data indexing and range query processing via Voronoi diagram for internet of things. Fut. Gener. Comput, Syst (2018)Google Scholar
  12. 12.
    Yan, Z., Zhang, P., Vasilakos, A.V.: A survey on trust management for Internet of Things. J. Netw. Comput. Appl. 42, 120–134 (2014).  https://doi.org/10.1016/j.jnca.2014.01.014 CrossRefGoogle Scholar
  13. 13.
    Mashal, I., Alsaryrah, O., Chung, T.-Y., Yang, C.-Z., Kuo, W.-H., Agrawal, D.P.: Choices for interaction with things on Internet and underlying issues. Ad Hoc Netw. 28, 68–90 (2015)CrossRefGoogle Scholar
  14. 14.
    Baccarelli, E., Naranjo, P.G.V., Scarpiniti, M., Shojafar, M., Abawajy, J.H.: Fog of everything: energy-efficient networked computing architectures, research challenges, and a case study. IEEE Access. 5, 9882–9910 (2017)CrossRefGoogle Scholar
  15. 15.
    Kim, H.Y.: A load balancing scheme with Loadbot in IoT networks. J. Supercomput. 74, 1215–1226 (2018).  https://doi.org/10.1007/s11227-017-2087-6 CrossRefGoogle Scholar
  16. 16.
    Kuppusamy, P., Kalpana, R., Rao, P.V.V.: Optimized traffic control and data processing using IoT. Cluster Comput. (2018).  https://doi.org/10.1007/s10586-018-2172-5 Google Scholar
  17. 17.
    Al-Janabi, T.A., Al-Raweshidy, H.S.: Optimised clustering algorithm-based centralised architecture for load balancing in iot network. In: Proceedings of the 2017 International Symposium on Wireless Communication Systems, pp. 269–274. IEEE, New York, (2017)Google Scholar
  18. 18.
    Neghabi, A.A., Navimipour, N.J., Hosseinzadeh, M., Rezaee, A.: Load balancing mechanisms in the software defined networks: a systematic and comprehensive review of the literature. IEEE Access. 6, 14159–14178 (2018).  https://doi.org/10.1109/ACCESS.2018.2805842 CrossRefGoogle Scholar
  19. 19.
    Milani, A.S., Navimipour, N.J.: Load balancing mechanisms and techniques in the cloud environments: systematic literature review and future trends. J. Netw. Comput. Appl. 71, 86–98 (2016).  https://doi.org/10.1016/j.jnca.2016.06.003 CrossRefGoogle Scholar
  20. 20.
    Abdelaziz, A., Elhoseny, M., Salama, A.S., Riad, A.M., Hassanien, A.E.: Intelligent algorithms for optimal selection of virtual machine in cloud environment, towards enhance healthcare services. In: Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, pp. 289–298. Springer (2017)Google Scholar
  21. 21.
    Zhong, H., Fang, Y., Cui, J.: Reprint of “LBBSRT: an efficient SDN load balancing scheme based on server response time”. Fut. Gener. Comput. Syst. 80, 409–416 (2018)CrossRefGoogle Scholar
  22. 22.
    Xu, M., Tian, W., Buyya, R.: A survey on load balancing algorithms for virtual machines placement in cloud computing. Concurr. Comput. 29, e4123 (2017).  https://doi.org/10.1002/cpe.4123 CrossRefGoogle Scholar
  23. 23.
    Ashton, K.: That “internet of things” thing. RFID J. 22, 97–114 (2009)Google Scholar
  24. 24.
    Sakiz, F., Sen, S.: A survey of attacks and detection mechanisms on intelligent transportation systems: VANETs and IoV. Ad Hoc Netw. 61, 33–50 (2017)CrossRefGoogle Scholar
  25. 25.
    Nourjou, R., Hashemipour, M.: Smart energy utilities based on real-time GIS web services and Internet of Things. Proc. Comput. Sci. 110, 8–15 (2017)CrossRefGoogle Scholar
  26. 26.
    Kertiou, I., Benharzallah, S., Kahloul, L., Beggas, M., Euler, R., Laouid, A., Bounceur, A.: A dynamic skyline technique for a context-aware selection of the best sensors in an IoT architecture. Ad Hoc Netw. 81, 183–196 (2018)CrossRefGoogle Scholar
  27. 27.
    Ray, P.P., Dash, D., De, D.: Internet of things-based real-time model study on e-healthcare: device, message service and dew computing. Comput. Netw. 149, 226–239 (2019)CrossRefGoogle Scholar
  28. 28.
    Cebe, M., Akkaya, K.: Efficient certificate revocation management schemes for IoT-based advanced metering infrastructures in smart cities. Ad Hoc Netw. (2018).  https://doi.org/10.1016/j.adhoc.2018.10.027 Google Scholar
  29. 29.
    Sicari, S., Cappiello, C., De Pellegrini, F., Miorandi, D., Coen-Porisini, A.: A security-and quality-aware system architecture for Internet of Things. Inf. Syst. Front. 18, 665–677 (2016)CrossRefGoogle Scholar
  30. 30.
    Gu, Y., Chen, H., Zhou, Y., Li, Y., Vucetic, B.: Timely status update in internet of things monitoring systems: an age-energy tradeoff. IEEE Internet Things J. (2019).  https://doi.org/10.1109/JIOT.2019.2900528 Google Scholar
  31. 31.
    Li, Q., Ding, D., Conti, M.: Brain-computer interface applications: Security and privacy challenges. In: Proceedings of the 2015 IEEE Conference on Communications and Network Security (CNS), pp. 663–666. IEEE, New York (2015)Google Scholar
  32. 32.
    Plageras, A.P., Psannis, K.E., Stergiou, C., Wang, H., Gupta, B.B.: Efficient IoT-based sensor BIG Data collection–processing and analysis in smart buildings. Fut. Gener. Comput. Syst. 82, 349–357 (2018)CrossRefGoogle Scholar
  33. 33.
    Li, Q., Gochhayat, S.P., Conti, M., Liu, F.: EnergIoT: a solution to improve network lifetime of IoT devices. Pervasive Mob. Comput. 42, 124–133 (2017)CrossRefGoogle Scholar
  34. 34.
    Memos, V.A., Psannis, K.E., Ishibashi, Y., Kim, B.-G., Gupta, B.B.: An efficient algorithm for media-based surveillance system (EAMSuS) in IoT smart city framework. Fut. Gener. Comput. Syst. 83, 619–628 (2018)CrossRefGoogle Scholar
  35. 35.
    Bhattacharjya, A., Zhong, X., Wang, J., Li, X.: Security challenges and concerns of Internet of Things (IoT). In: Proceedings of the Cyber-Physical Systems: Architecture, Security and Application, pp. 153–185. Springer, New York (2019)Google Scholar
  36. 36.
    Kumar, M., Sabale, K., Mini, S., Panigrahi, T.: Priority based deployment of IoT devices. In: Proceedings of the 2018 International Conference on Information Networking (ICOIN), pp. 760–764. (2018)Google Scholar
  37. 37.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54, 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  38. 38.
    Kim, H.-S., Bang, J.-S., Lee, Y.-H.: Distributed network configuration in large-scale low power wireless networks. Comput. Netw. 70, 288–301 (2014)CrossRefGoogle Scholar
  39. 39.
    Hu, P., Ning, H., Qiu, T., Zhang, Y., Luo, X.: Fog computing based face identification and resolution scheme in internet of things. IEEE Trans. Ind. Inf. 13, 1910–1920 (2017)CrossRefGoogle Scholar
  40. 40.
    Chen, S., Xu, H., Liu, D., Hu, B., Wang, H.: A vision of IoT: applications, challenges, and opportunities with china perspective. IEEE Internet Things J. 1, 349–359 (2014)CrossRefGoogle Scholar
  41. 41.
    Krco, S., Pokric, B., Carrez, F.: Designing IoT architecture (s): a European perspective, in: Internet Things (WF-IoT). In: Proceedings of the 2014 IEEE World Forum, pp. 79–84. IEEE, New York (2014)Google Scholar
  42. 42.
    Aazam, M., Khan, I., Alsaffar, A.A., Huh, E.-N.: Cloud of Things: integrating Internet of Things and cloud computing and the issues involved. In: Proceedings of the 2014 International 11th Bhurban Conference on Applied Science & Technology (IBCAST), pp. 414–419. IEEE, New York (2014)Google Scholar
  43. 43.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17, 2347–2376 (2015)CrossRefGoogle Scholar
  44. 44.
    Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the Internet of Things architecture, possible applications and key challenges. In: Proceedings of the 10th International Conference on Frontiers of Information Technology (FIT), pp. 257–260. IEEE, New York (2012)Google Scholar
  45. 45.
    Wunck, C., Baumann, S.: Towards a process reference model for the information value chain in IoT applications. In: Proceedings of the International Conference on European Technology and Engineering Management Summit (E-TEMS), pp. 1–6. IEEE, New York (2017)Google Scholar
  46. 46.
    Zhang, Q., Yang, L.T., Chen, Z., Li, P.: High-order possibilistic c-means algorithms based on tensor decompositions for big data in IoT. Inf. Fusion. 39, 72–80 (2018)CrossRefGoogle Scholar
  47. 47.
    Zhang, G., Kou, L., Zhang, L., Liu, C., Da, Q., Sun, J.: A new digital watermarking method for data integrity protection in the perception layer of IoT. Secur. Commun. Netw. (2017).  https://doi.org/10.1155/2017/3126010 Google Scholar
  48. 48.
    Ghanbari, Z., Navimipour, N.J., Hosseinzadeh, M., Darwesh, A.: Resource allocation mechanisms and approaches on the Internet of Things. Clust. Comput. (2019).  https://doi.org/10.1007/s10586-019-02910-8 Google Scholar
  49. 49.
    Suganuma, T., Oide, T., Kitagami, S., Sugawara, K., Shiratori, N.: Multiagent-based flexible edge computing architecture for IoT. IEEE Netw. 32, 16–23 (2018)CrossRefGoogle Scholar
  50. 50.
    Ferrera, E., Conzon, D., Brizzi, P., Rossini, R., Pastrone, C., Jentsch, M., Kool, P., Kamienski, C., Sadok, D.: XMPP-based infrastructure for IoT network management and rapid services and applications development. Ann. Telecommun. 72, 443–457 (2017)CrossRefGoogle Scholar
  51. 51.
    Sethi, P., Sarangi, S.R.: Internet of things: architectures, protocols, and applications. J. Electr. Comput. Eng. (2017).  https://doi.org/10.1155/2017/9324035 Google Scholar
  52. 52.
    Darwish, A., Hassanien, A.E., Elhoseny, M., Sangaiah, A.K., Muhammad, K.: The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: opportunities, challenges, and open problems. J. Ambient Intell. Humaniz. Comput. (2017).  https://doi.org/10.1007/s12652-017-0659-1 Google Scholar
  53. 53.
    Yousafzai, A., Gani, A., Noor, R.M., Sookhak, M., Talebian, H., Shiraz, M., Khan, M.K.: Cloud resource allocation schemes: review, taxonomy, and opportunities. Knowl. Inf. Syst. 50, 347–381 (2017)CrossRefGoogle Scholar
  54. 54.
    Naqvi, S.A.A., Javaid, N., Butt, H., Kamal, M.B., Hamza, A., Kashif, M.: Metaheuristic optimization technique for load balancing in cloud-fog environment integrated with smart grid. In: International Conference on Network- Based Information Systems, pp. 700–711. Springer (2018)Google Scholar
  55. 55.
    Cai, Z., Bourgeois, A., Tong, W.: Guest editorial: special issue on Internet of Things. Tsinghua Sci. Technol. 22, 343–344 (2017)CrossRefGoogle Scholar
  56. 56.
    Salman, M.A., Bertelle, C., Sanlaville, E.: The behavior of load balancing strategies with regard to the network structure in distributed computing systems. In: 2014 10th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 432–439. IEEE, New York, (2014)Google Scholar
  57. 57.
    Puthal, D., Obaidat, M.S., Nanda, P., Prasad, M., Mohanty, S.P., Zomaya, A.Y.: Secure and sustainable load balancing of edge data centers in fog computing. IEEE Commun. Mag. 56, 60–65 (2018)CrossRefGoogle Scholar
  58. 58.
    Guo, Z., Su, M., Xu, Y., Duan, Z., Wang, L., Hui, S., Chao, H.J.: Improving the performance of load balancing in software-defined networks through load variance-based synchronization. Comput. Netw. 68, 95–109 (2014)CrossRefGoogle Scholar
  59. 59.
    Kaul, A., Xue, L., Obraczka, K., Santos, M.A.S., Turletti, T.: Handover and load balancing for distributed network control: applications in ITS message dissemination. In: 2018 27th International Conference on Computer Communication and Networks, pp. 1–8. IEEE, New York (2018)Google Scholar
  60. 60.
    Ahmed, A.M., Paulus, R.: Congestion detection technique for multipath routing and load balancing in WSN. Wirel. Netw. 23, 881–888 (2017)CrossRefGoogle Scholar
  61. 61.
    Levin, A., Lorenz, D., Merlino, G., Panarello, A., Puliafito, A., Tricomi, G.: Hierarchical load balancing as a service for federated cloud networks. Comput. Commun. 129, 125–137 (2018)CrossRefGoogle Scholar
  62. 62.
    Paya, A., Marinescu, D.C.: Energy-aware load balancing and application scaling for the cloud ecosystem. IEEE Trans. Cloud Comput. 5, 15–27 (2017)CrossRefGoogle Scholar
  63. 63.
    Wajgi, D., Thakur, N.V.: Load balancing algorithms in wireless sensor network: a survey, IRACST. Int. J. Comput. Netw. Wirel. Commun. 2, 2250–3501 (2012)Google Scholar
  64. 64.
    Raghava, N.S., Singh, D.: Comparative study on load balancing techniques in cloud computing. Int. J. Inf. Technol. 1, 53–60 (2014)Google Scholar
  65. 65.
    Sreenivas, V., Prathap, M., Kemal, M.: Load balancing techniques: major challenge in Cloud Computing-a systematic review. In: Proceedings of the 2014 International Conference on Electronic Communication Systems (ICECS), pp. 1–6. IEEE, New York (2014)Google Scholar
  66. 66.
    Kaur, A., Kaur, B., Singh, D.: Optimization techniques for resource provisioning and load balancing in cloud environment: a review. Int. J. Inf. Eng. Electron. Bus. 9, 28 (2017)Google Scholar
  67. 67.
    Sebastian, A., Sivagurunathan, S.: A Survey on Load Balancing Schemes in RPL based Internet of Things. Int. J. Sci. Res. Netw. Secur. Commun. 6, 43–49 (2018)Google Scholar
  68. 68.
    Ahmad, M.O., Khan, R.Z.: Load balancing tools and techniques in cloud computing: a systematic review. Adv. Comput. Comput. Sci (2018).  https://doi.org/10.1007/978-981-10-3773-3_18 Google Scholar
  69. 69.
    Hota, A., Mohapatra, S., Mohanty, S.: Survey of different load balancing approach-based algorithms in cloud computing: a comprehensive review. Comput. Intell. Data Min. (2019).  https://doi.org/10.1007/978-981-10-8055-5_10 Google Scholar
  70. 70.
    Lu, Y., Papagiannidis, S., Alamanos, E.: Internet of Things: A systematic review of the business literature from the user and organisational perspectives. Technol. Forecast. Soc. Change. 136, 285–297 (2018).  https://doi.org/10.1016/j.techfore.2018.01.022 CrossRefGoogle Scholar
  71. 71.
    Wang, Y., Wu, X., Haas, H.: Distributed load balancing for Internet of Things by using Li-Fi and RF hybrid network. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, pp. 1289–1294. IEEE, New York (2015).  https://doi.org/10.1109/pimrc.2015.7343497
  72. 72.
    Shin, J.W., Kim, J.S., Chung, M.Y., Lee, S.J.: Control channel load balancing in narrow band cellular IoT systems supporting coverage class. In: Proceedings of the International Conference on Intelligent System Modeling Simulation, ISMS, pp. 343–348. IEEE, New York (2016).  https://doi.org/10.1109/isms.2016.47
  73. 73.
    Wang, X., Sheng, M.J., Lou, Y.Y., Shih, Y.Y., Chiang, M.: Internet of Things session management over LTE—balancing signal load, power, and delay. IEEE Internet Things J. 3, 339–353 (2016).  https://doi.org/10.1109/JIOT.2015.2497230 CrossRefGoogle Scholar
  74. 74.
    Tsai, C., Moh, M.: Load balancing in 5G cloud radio access networks supporting IoT communications for smart communities. In: 2017 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2017, pp. 259–264. IEEE, New York (2017).  https://doi.org/10.1109/isspit.2017.8388652
  75. 75.
    Kotagi, V.J., Singh, F., Murthy, C.S.R.: Adaptive load balanced routing in heterogeneous IoT networks. In: 2017 IEEE International Conference on Communication, Work, ICC Work, 2017, pp. 589–594. IEEE, New York (2017).  https://doi.org/10.1109/iccw.2017.7962722
  76. 76.
    Hamrioui, S., Lorenz, P.: Load balancing algorithm for efficient and reliable IoT communications within E-health environment. In: Proceedings of the 2017 IEEE Global Communications Conference, GLOBECOM 2017, pp. 1–6. IEEE, New York (2017).  https://doi.org/10.1109/glocom.2017.8254435
  77. 77.
    Sun, X., Ansari, N.: Traffic Load Balancing among Brokers at the IoT Application Layer. IEEE Trans. Netw. Serv. Manag. 15, 489–502 (2018).  https://doi.org/10.1109/TNSM.2017.2787859 CrossRefGoogle Scholar
  78. 78.
    Fan, Q., Ansari, N.: Towards workload balancing in Fog computing empowered IoT. IEEE Trans. Netw. Sci. Eng. (2018).  https://doi.org/10.1109/tnse.2018.2852762 Google Scholar
  79. 79.
    Wang, Y., Ren, Z., Zhang, H., Hou, X., Xiao, Y.: “Combat Cloud-Fog” network architecture for internet of battlefield things and load balancing technology. In: 2018 IEEE International Conference on Smart Internet of Things, pp. 263–268. IEEE, New York (2018).  https://doi.org/10.1109/smartiot.2018.00054
  80. 80.
    Taghizadeh, S., Bobarshad, H., Elbiaze, H.: CLRPL: context-aware and load balancing RPL for IoT networks under heavy and highly dynamic load. IEEE Access. 6, 23277–23291 (2018).  https://doi.org/10.1109/ACCESS.2018.2817128 CrossRefGoogle Scholar
  81. 81.
    Chien, W., Lai, C., Cho, H., Chao, H.: A SDN-SFC-based service-oriented load balancing for the IoT applications. J. Netw. Comput. Appl. (2018).  https://doi.org/10.1016/j.jnca.2018.04.009 Google Scholar
  82. 82.
    Naranjo, P.G.V., Pooranian, Z., Shojafar, M., Conti, M., Buyya, R.: FOCAN: a Fog-supported smart city network architecture for management of applications in the Internet of Everything environments. J. Parallel Distrib. Comput. (2018).  https://doi.org/10.1016/j.jpdc.2018.07.003 Google Scholar
  83. 83.
    Liu, Z., Li, J., Wang, Y., Li, X., Chen, S.: HGL: a hybrid global-local load balancing routing scheme for the internet of things through satellite networks. Int. J. Distrib. Sens. Networks. 13, 1550147717692586 (2017).  https://doi.org/10.1177/1550147717692586 Google Scholar
  84. 84.
    Santiago, S., Kumar, A., Arockiam, L.: EALBA: energy aware load balancing algorithm for IoT networks. In: Proceedings of the 2018 International Conference on Mechatronic Systems and Robots, pp. 46–50. ACM (2018)Google Scholar
  85. 85.
    Zhang, L., Zhong, X., Wei, Y., Yang, K.: Dynamic load-balancing vertical control for large-scale software-defined Internet of Things. http://arxiv.org/abs/1712.10210. (2017)
  86. 86.
    Tseng, C.H.: Multipath load balancing routing for Internet of things. J. Sensors. (2016).  https://doi.org/10.1155/2016/4250746 Google Scholar
  87. 87.
    Kwon, J., Park, J., Kim, E.: Load-balanced resource directory architecture for large-scale Internet of Things local networks. Sensors Mater. 30, 1817–1824 (2018)CrossRefGoogle Scholar
  88. 88.
    Naranjo, P., Pooranian, Z., Shamshirband, S., Abawajy, J., Conti, M.: Fog over virtualized IoT: new opportunity for context-aware networked applications and a Case Study. Appl. Sci. 7, 1325 (2017)CrossRefGoogle Scholar
  89. 89.
    Tavares, J.M.C.: Internet of Things: security and organization. IEEE Comput. 78, 544–546 (2015)Google Scholar
  90. 90.
    Mishra, S., Thakkar, H.: Features of WSN and Data Aggregation techniques in WSN: A Survey. Int. J. Eng. Innov. Technol. 1, 264–273 (2012)Google Scholar
  91. 91.
    Gowtham, M.S., Subramaniam, K.: Congestion control and packet recovery for cross layer approach in MANET. Clust. Comput. (2018).  https://doi.org/10.1007/s10586-017-1548-2 Google Scholar
  92. 92.
    Pourghebleh, B., Jafari Navimipour, N.: Towards efficient data collection mechanisms in the vehicular ad hoc networks. Int. J. Commun. Syst. (2019).  https://doi.org/10.1002/dac.3893 Google Scholar
  93. 93.
    Biswas, S., Das, R., Chatterjee, P.: Energy-Efficient Connected Target Coverage in Multi-hop Wireless Sensor Networks. Industry Interactive Innovations in Science, Engineering and Technology, pp. 411–421. Springer, Singapore (2018)CrossRefGoogle Scholar
  94. 94.
    Soundarabai, P.B., Sahai, R.K., Thriveni, J., Venugopal, K.R.: Comparative study on load balancing techniques in distributed systems. Int. J. Inf. Technol. 6, 53–60 (2012)Google Scholar
  95. 95.
    Nakai, A., Madeira, E., Buzato, L.E.: On the use of resource reservation for web services load balancing. J. Netw. Syst. Manag. 23, 502–538 (2015).  https://doi.org/10.1007/s10922-014-9303-y CrossRefGoogle Scholar
  96. 96.
    Goswami, S., De Sarkar, A.: A Comparative study of load balancing algorithms in computational grid environment. In: Proceedings of the 2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation, vol. 1, pp. 99–104. (2013).  https://doi.org/10.1109/cimsim.2013.24
  97. 97.
    Elhoseny, M., Abdelaziz, A., Salama, A.S., Riad, A.M., Muhammad, K., Sangaiah, A.K.: A hybrid model of internet of things and cloud computing to manage big data in health services applications. Fut. Gener. Comput. Syst. 86, 1383–1394 (2018)CrossRefGoogle Scholar
  98. 98.
    Wei, L., Zhang, Z., Zhang, D., Leung, S.C.H.: A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints. Eur. J. Oper. Res. 265, 843–859 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  99. 99.
    Zhang, W., Maleki, A., Rosen, M.A., Liu, J.: Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage. Energy 163, 191–207 (2018)CrossRefGoogle Scholar
  100. 100.
    Haznedar, B., Kalinli, A.: Training ANFIS structure using simulated annealing algorithm for dynamic systems identification. Neurocomputing 302, 66–74 (2018)CrossRefGoogle Scholar
  101. 101.
    Bagherlou, H., Ghaffari, A.: A routing protocol for vehicular ad hoc networks using simulated annealing algorithm and neural networks. J. Supercomput. 74, 2528–2552 (2018)CrossRefGoogle Scholar
  102. 102.
    Jiang, Y.: A survey of task allocation and load balancing in distributed systems. IEEE Trans. Parallel Distrib. Syst. 27, 585–599 (2016).  https://doi.org/10.1109/TPDS.2015.2407900 CrossRefGoogle Scholar
  103. 103.
    Riaz, S., Park, U.: Power control for interference mitigation by evolutionary game theory in uplink NOMA for 5G networks. J. Chin. Inst. Eng. 41, 18–25 (2018)CrossRefGoogle Scholar
  104. 104.
    Zhang, D., Chen, C., Cui, Y., Zhang, T.: New method of energy efficient subcarrier allocation based on evolutionary game theory. Mob. Netw. Appl. (2018).  https://doi.org/10.1007/s11036-018-1123-y Google Scholar
  105. 105.
    Attiah, A., Amjad, M.F., Chatterjee, M., Zou, C.: An evolutionary routing game for energy balance in Wireless Sensor Networks. Comput. Netw. 138, 31–43 (2018)CrossRefGoogle Scholar
  106. 106.
    Maheshwari, M.K., Roy, A., Saxena, N.: DRX over LAA-LTE-a new design and analysis based on semi-Markov model. IEEE Trans. Mob. Comput. 18, 276–289 (2019)CrossRefGoogle Scholar
  107. 107.
    Zhou, J.H., Feng, G., Yum, T.-S.P., Yan, M., Qin, S.: Learning based discontinuous reception (DRX) for machine-type communications. IEEE Internet Things J. (2019).  https://doi.org/10.1109/JIOT.2019.2903347 Google Scholar
  108. 108.
    Liu, D., Wang, C., Rasmussen, L.K.: Discontinuous reception for multiple-beam communication. IEEE Access. 7, 46931–46946 (2019)CrossRefGoogle Scholar
  109. 109.
    Al-Turjman, F., Mostarda, L., Ever, E., Darwish, A., Khalil, N.S.: Network experience scheduling and routing approach for big data transmission in the Internet of Things. IEEE Access. 7, 14501–14512 (2019)CrossRefGoogle Scholar
  110. 110.
    Chen, G., Tang, J., Coon, J.P.: Optimal routing for multihop social-based D2D communications in the Internet of Things. IEEE Internet Things J. 5, 1880–1889 (2018)CrossRefGoogle Scholar
  111. 111.
    Li, X., Li, D., Wan, J., Liu, C., Imran, M.: Adaptive transmission optimization in SDN-based industrial Internet of Things with edge computing. IEEE Internet Things J. 5, 1351–1360 (2018)CrossRefGoogle Scholar
  112. 112.
    Machado, K.L.S., Boukerche, A., Cerqueira, E.C., Loureiro, A.: A data-centric approach for social and spatiotemporal sensing in smart cities. IEEE Internet Comput. 23, 9–18 (2019)CrossRefGoogle Scholar
  113. 113.
    Li, H., Guo, F., Zhang, W., Wang, J., Xing, J.: (a, k)-Anonymous scheme for privacy-preserving data collection in IoT-based healthcare services systems. J. Med. Syst. 42, 56 (2018)CrossRefGoogle Scholar
  114. 114.
    Yang, S., Xu, C., Qiu, X., Wu, D.O.: Diffusion Kalman filter with quantized information exchange in distributed mobile crowdsensing. IEEE Internet Things J. (2018).  https://doi.org/10.1109/JIOT.2018.2881542 Google Scholar
  115. 115.
    Wang, J., Jiang, C., Han, Z., Ren, Y., Hanzo, L.: Internet of vehicles: sensing-aided transportation information collection and diffusion. IEEE Trans. Veh. Technol. 67, 3813–3825 (2018)CrossRefGoogle Scholar
  116. 116.
    Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)CrossRefGoogle Scholar
  117. 117.
    Ghaemi, M., Feizi-Derakhshi, M.-R.: Forest optimization algorithm. Expert Syst. Appl. 41, 6676–6687 (2014)CrossRefGoogle Scholar
  118. 118.
    Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. Handbook of Metaheuristics, pp. 311–351. Springer, New York (2019)CrossRefGoogle Scholar
  119. 119.
    Bansal, J.C.: Particle swarm optimization. Evolutionary and Swarm Intelligence Algorithms, pp. 11–23. Springer, New York (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Urmia BranchIslamic Azad UniversityUrmiaIran
  2. 2.Young Researchers and Elite Club, Tabriz BranchIslamic Azad UniversityTabrizIran

Personalised recommendations