Resource allocation mechanisms and approaches on the Internet of Things

  • Zahra Ghanbari
  • Nima Jafari Navimipour
  • Mehdi HosseinzadehEmail author
  • Aso Darwesh


Internet of Things (IoT) as a novel paradigm is an environment with a vast number of connected things and applications. The IoT devices are used to generate data, which transforms into useable information and provides applied resources to end-users and this process is the main goal of IoT. Therefore, one of the important subjects in the IoT is resource allocation which aims is load balancing and minimizing operational cost, and power consuming. In addition, the resources should be allocated in such a way to be a balanced efficiency that can increase the system performance, Quality of Service (QoS) and Service Level Agreement (SLA). Although the resource allocation is very important in the IoT, there is no systematic review in this field. Therefore, in this paper, a Systematic Literature Review (SLR) is provided and the resources allocation methods in the IoT and used algorithms are investigated. Different classification, including cost-aware, context-aware, efficiency-aware, load-balancing-aware, power-aware, QoS-aware, SLA-based and utilization-aware resource allocation mechanisms are organized to investigate the resource allocation techniques. We present several parameters and describe them in each category. In addition, the used parameters in different articles are evaluated and the major developments in each category are surveyed and are outlined the new challenges. Furthermore, an SLR is provided in each of these eight categories. In this paper, a structure of different technical keys in the scope of resource allocation in the IoT and its platforms are presented and the important areas for improving the resource allocation methods in the future is highlighted and the open issues about resource allocation in IoT to achieve a better utilization of this technology are focused. The future direction is useful for academic researchers that work on IoT. This study shows that an independent technique does not exist to address all issues and challenges in resource allocation for IoT.


Energy Internet of Things IoT Load balancing Power QoS Resource allocation 



  1. 1.
    Yang, L., Yang, S.-H., Plotnick, L.: How the Internet of Things technology enhances emergency response operations. Technol. Forecast. Soc. Change 80, 1854–1867 (2013)CrossRefGoogle Scholar
  2. 2.
    Horrow, S., Sardana, A.: Identity management framework for cloud based internet of things. In: Proceedings of the First International Conference on Security of Internet of Things, pp. 200–203 (2012)Google Scholar
  3. 3.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17, 2347–2376 (2015)CrossRefGoogle Scholar
  4. 4.
    Pourghebleh, B., Navimipour, N.J.: Data aggregation mechanisms in the internet of Things: a systematic review of the literature and recommendations for future research. J. Netw. Comput. Appl. 97, 23–34 (2017)CrossRefGoogle Scholar
  5. 5.
    Yan, Z., Zhang, P., Vasilakos, A.V.: A survey on trust management for Internet of Things. J. Netw. Comput. Appl. 42, 120–134 (2014)CrossRefGoogle Scholar
  6. 6.
    Alaba, F.A., Othman, M., Hashem, I.A.T., Alotaibi, F.: Internet of Things security: a survey. J. Netw. Comput. Appl. 88, 10–28 (2017)CrossRefGoogle Scholar
  7. 7.
    Lee, I., Lee, K.: The internet of Things (IoT): applications, investments, and challenges for enterprises. Bus. Horiz. 58, 431–440 (2015)CrossRefGoogle Scholar
  8. 8.
    Mattern, F., Floerkemeier, C.: From the internet of computers to the Internet of Things. In: Sachs, K., Petrov, I., Guerrero, P. (eds.) From Active Data Management to Event-Based Systems and More, pp. 242–259. Springer, New York (2010)CrossRefGoogle Scholar
  9. 9.
    Angelakis, V., Avgouleas, I., Pappas, N., Fitzgerald, E., Yuan, D.: Allocation of heterogeneous resources of an IoT device to flexible services. IEEE Internet Things J. 3, 691–700 (2016)CrossRefGoogle Scholar
  10. 10.
    Bassi, A., Bauer, M., Fiedler, M., Kranenburg, R.V.: In: Hyttinen, P. (ed.) Enabling Things to Talk. Springer, New York (2013)CrossRefGoogle Scholar
  11. 11.
    Delicato, F.C., Pires, P.F., Batista, T.: Resource Management for Internet of Things. Springer, New York (2017)CrossRefGoogle Scholar
  12. 12.
    Kumar, A.K., Harikrishna, P.: Allocation of heterogeneous resources of an IoT device to flexible services. IEEE Internet Things J. 3(5), 69–700 (2016)Google Scholar
  13. 13.
    Singh, A., Viniotis, Y.: Resource allocation for IoT applications in cloud environments. In: 2017 International Conference on Computing, Networking and Communications (ICNC), pp. 719–723 (2017)Google Scholar
  14. 14.
    Krco, S., Pokric, B., Carrez, F.: Designing IoT architecture (s): a European perspective. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 79–84 (2014)Google Scholar
  15. 15.
    Khan, R., Khan S. U., Zaheer, R., Khan S.: Future internet: the Internet of Things architecture, possible applications and key challenges. In: 2012 10th International Conference on Frontiers of Information Technology (FIT), pp. 257–260 (2012)Google Scholar
  16. 16.
    Wu, M., Lu, T.-J., Ling, F.-Y., Sun, J., Du, H.-Y.: Research on the architecture of Internet of Things. In: 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), pp. V5-484–V5-487 (2010)Google Scholar
  17. 17.
    Marques, G., Garcia, N., Pombo, N.: A survey on IoT: architectures, elements, applications, QoS, platforms and security concepts. In: Mavromoustakis, C.X., Mastorakis, G. (eds.) Advances in Mobile Cloud Computing and Big Data in the 5G Era, pp. 115–130. Springer, New York (2017)CrossRefGoogle Scholar
  18. 18.
    Rahmani, A.M., Liljeberg, P., Preden, J.-S., Jantsch, A.: Fog Computing in the Internet of Things: Intelligence at the Edge. Springer, New York (2017)Google Scholar
  19. 19.
    Delicato, F. C., Pires, P. F., Batista, T.: The resource management challenge in IoT. In: Resource Management for Internet of Things, pp. 7-18, Springer, New York (2017)Google Scholar
  20. 20.
    Kumar, D., Singh, A. S.: A survey on resource allocation techniques in cloud computing. In: 2015 International Conference on Computing, Communication & Automation (ICCCA), pp. 655–660 (2015)Google Scholar
  21. 21.
    Botta, A., De Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing and the internet of things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016)CrossRefGoogle Scholar
  22. 22.
    Bonomi, F.: Connected vehicles, the internet of things, and fog computing. In: The eighth ACM international workshop on Vehicular inter-networking (VANET), pp. 13–15, Las Vegas, USA (2011)Google Scholar
  23. 23.
    Baccarelli, E., Naranjo, P.G.V., Scarpiniti, M., Shojafar, M., Abawajy, J.H.: Fog of everything: energy-efficient networked computing architectures, research challenges, and a case study. IEEE Access 5, 9882–9910 (2017)CrossRefGoogle Scholar
  24. 24.
    Chowdhery, A., Levorato, M., Burago, I., Baidya, S.: Urban IoT edge analytics. In: Fog Computing in the Internet of Things, pp. 101–120, Springer, New York (2018)Google Scholar
  25. 25.
    Naranjo, P. G. V., Pooranian, Z., Shojafar, M., Conti, M., Buyya, R.: FOCAN: a fog-supported smart city network architecture for management of applications in the internet of everything environments, J.ParallelDistrib.Comput., arXiv preprint arXiv:1710.01801, (2017)
  26. 26.
    Shojafar, M., Pooranian, Z., Naranjo, P.G.V., Baccarelli, E.: FLAPS: bandwidth and delay-efficient distributed data searching in Fog-supported P2P content delivery networks. J. Supercomput. 73, 5239–5260 (2017)CrossRefGoogle Scholar
  27. 27. (2014). 3GPP TS 23.303, Architecture enhancements to support proximity services (prose)
  28. 28.
    Naranjo, P.G.V., Baccarelli, E., Scarpiniti, M.: Design and energy-efficient resource management of virtualized networked Fog architectures for the real-time support of IoT applications. J. Supercomput. 74(6), 2470–2507 (2018)CrossRefGoogle Scholar
  29. 29.
    Nazir, B., Ishaq, F., Shamshirband, S., Chronopoulos, A.T.: The impact of the implementation cost of replication in data grid job scheduling. Math. Comput. Appl. 23, 28 (2018)Google Scholar
  30. 30.
    Manate, B., Fortis, T.-F., Negru, V.: Optimizing cloud resources allocation for an Internet of Things architecture. Scalable Comput. 15, 345–355 (2015)Google Scholar
  31. 31.
    Choi, Y., Lim, Y.: Optimization approach for resource allocation on cloud computing for IoT. J. Distrib. Sens. Netw., Int (2016). CrossRefGoogle Scholar
  32. 32.
    Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4, 1125–1142 (2017)CrossRefGoogle Scholar
  33. 33.
    Soltani, Z., Navimipour, N.J.: Customer relationship management mechanisms: a systematic review of the state of the art literature and recommendations for future research. Comput. Hum. Behav. 61, 667–688 (2016)CrossRefGoogle Scholar
  34. 34.
    Neghabi, A.A., Navimipour, N.J., Hosseinzadeh, M., Rezaee, A.: Load balancing mechanisms in the software-defined networks: a systematic and comprehensive review of the literature. IEEE Access 6, 14159–14178 (2018)CrossRefGoogle Scholar
  35. 35.
    Becheikh, N., Landry, R., Amara, N.: Lessons from innovation empirical studies in the manufacturing sector: a systematic review of the literature from 1993–2003. Technovation 26, 644–664 (2006)CrossRefGoogle Scholar
  36. 36.
    Aznoli, F., Navimipour, N.J.: Deployment strategies in the wireless sensor networks: systematic literature review, classification, and current trends. Wirel Pers. Commun. 95(2), 819–846 (2016)CrossRefGoogle Scholar
  37. 37.
    Navimipour, N.J., Vakili, A.: Comprehensive and systematic review of the service composition mechanisms in the cloud environments. J. Netw. Comput. Appl. 81, 24–36 (2017)CrossRefGoogle Scholar
  38. 38.
    Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S.: Systematic literature reviews in software engineering–a systematic literature review. Inf. Softw. Technol. 51, 7–15 (2009)CrossRefGoogle Scholar
  39. 39.
    Madni, S.H.H., Latiff, M.S.A., Coulibaly, Y., Abdulhamid, S.: Recent advancements in resource allocation techniques for cloud computing environment: a systematic review. Clust. Comput. (2016). Google Scholar
  40. 40.
    Charband, Y., Navimipour, N.J.: Online knowledge sharing mechanisms: a systematic review of the state of the art literature and recommendations for future research. Inf. Syst. Front. 6, 1131–1151 (2016)CrossRefGoogle Scholar
  41. 41.
    Christin, D., Reinhardt, A., Mogre, P. S., Steinmetz, R.: Wireless sensor networks and the internet of things: selected challenges. In: Proceedings of the 8th GI/ITG KuVS Fachgespräch Drahtlose sensornetze, pp. 31–34 (2009)Google Scholar
  42. 42.
    Bandyopadhyay, D., Sen, J.: Internet of Things: applications and challenges in technology and standardization. Wirel. Pers. Commun. 58, 49–69 (2011)CrossRefGoogle Scholar
  43. 43.
    Castellani, A. P., Bui, N., Casari, P., Rossi, M., Shelby, Z., Zorzi, M.: Architecture and protocols for the internet of things: A case study. In: 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 678–683 (2010)Google Scholar
  44. 44.
    Li, Z., Liu, K., Su, Y., Ma, Y.: Adaptive resource allocation algorithm for internet of things with bandwidth constraint. Trans. Tianjin Univ. 18, 253–258 (2012)CrossRefGoogle Scholar
  45. 45.
    Liu, Q., Gao, L., Lou, P.: Resource management based on multi-agent technology for cloud manufacturing. In: 2011 International Conference on Electronics, Communications and Control (ICECC), pp. 2821–2824 (2011)Google Scholar
  46. 46.
    Peng, Z., Cui, D., Zuo, J., Li, Q., Xu, B., Lin, W.: Random task scheduling scheme based on reinforcement learning in cloud computing. Clust. Comput. 18, 1595–1607 (2015)CrossRefGoogle Scholar
  47. 47.
    Chen, X., Chen, L., Zeng, M., Zhang, X., Yang, D.: Downlink resource allocation for device-to-device communication underlying cellular networks. In: 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 232–237 (2012)Google Scholar
  48. 48.
    Pilloni, V., Atzori, L.: Consensus-based resource allocation among objects in the internet of things. Ann. Telecommun. (2017). Google Scholar
  49. 49.
    Wei, Q., Jin, Z.: Service discovery for internet of things: a context-awareness perspective. In: Proceedings of the Fourth Asia-Pacific Symposium on Internetware, p. 25 (2012)Google Scholar
  50. 50.
    Simão, J., Veiga, L.: A taxonomy of adaptive resource management mechanisms in virtual machines: recent progress and challenges. In: Cloud Computing, pp. 59–98, Springer, New York (2017)Google Scholar
  51. 51.
    Im, J., Kim, S., Kim, D.: IoT mashup as a service: cloud-based mashup service for the Internet of things. In: 2013 IEEE International Conference on Services Computing (SCC), pp. 462–469 (2013)Google Scholar
  52. 52.
    Shorgin, S., Samouylov, K.E., Gaidamaka, Y.V., Chukarin, A., Buturlin, I.A., Begishev, V.: Modeling radio resource allocation scheme with fixed transmission zones for multiservice M2 M communications in wireless IoT infrastructure. ACIIDS 2, 473–483 (2015)Google Scholar
  53. 53.
    Wu, D., Bao, L., Liu, C.H.: Scalable channel allocation and access scheduling for wireless internet-of-things. IEEE Sens. J. 13, 3596–3604 (2013)CrossRefGoogle Scholar
  54. 54.
    Carta, A., Pilloni, V., Atzori, L.: Resource allocation using virtual objects in the Internet of Things: a QoI oriented consensus algorithm. In: 19th International Conference on Innovations in Clouds, Internet and Networks (2016)Google Scholar
  55. 55.
    Aazam, M., Khan, I., Alsaffar, A. A., Huh E.-N.: Cloud of things: integrating Internet of Things and cloud computing and the issues involved. In: 2014 11th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 414–419 (2014)Google Scholar
  56. 56.
    Lan, H.Y., Song, H.T., Liu, H.B., Zhang, G.Y.: Heterogeneous-oriented resource allocation method in Internet of Things. Appl. Mech. Mater. 427, 2791–2794 (2013)CrossRefGoogle Scholar
  57. 57.
    Xu, J., Andrepoulos, Y., Xiao, Y., van Der Schaar, M.: Non-stationary resource allocation policies for delay-constrained video streaming: application to video over Internet-of-Things-enabled networks. IEEE J. Sel. Areas Commun. 32, 782–794 (2014)CrossRefGoogle Scholar
  58. 58.
    Huang, J., Yin, Y., Yan, H., Zhao, M., Duan, Q.: Context-aware resource allocation for device-to-device communications in cloud-centric Internet of Things. J. Chongqing Univ. Posts Telecommun. 27, 484–492 (2015)Google Scholar
  59. 59.
    Cai, H., Da Xu, L., Xu, B., Xie, C., Qin, S., Jiang, L.: IoT-based configurable information service platform for product lifecycle management. IEEE Trans. Indus. Inf. 10, 1558–1567 (2014)CrossRefGoogle Scholar
  60. 60.
    Kim, H.: Low power routing and channel allocation method of wireless video sensor networks for Internet of Things (IoT). In 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 446–451 (2014)Google Scholar
  61. 61.
    Wang, J., Cvijetic, N., Kanonakis, K., Wang, T., Chang, G.-K.: Novel optical access network virtualization and dynamic resource allocation algorithms for the internet of things. In: Optical Fiber Communication Conference, p. Tu2E. 3 (2015)Google Scholar
  62. 62.
    Colistra, G., Pilloni, V., Atzori, L.: Task allocation in group of nodes in the IoT: A consensus approach. In: 2014 IEEE International Conference On Communications (ICC), pp. 3848–3853 (2014)Google Scholar
  63. 63.
    Abedin, S. F., Alam, M. G. R., Il, S., Moon, C. S. H.: An optimal resource allocation scheme for Fog based P2P IoT Network. In: Open image in new window , pp. 395–397 (2015)Google Scholar
  64. 64.
    Fang, S., Da Xu, L., Zhu, Y., Ahati, J., Pei, H., Yan, J.: An integrated system for regional environmental monitoring and management based on internet of things. IEEE Trans. Indus. Inf. 10, 1596–1605 (2014)CrossRefGoogle Scholar
  65. 65.
    Huang, J., Yin, Y., Duan, Q., Yan, H.: A game-theoretic analysis on context-aware resource allocation for device-to-device communications in cloud-centric internet of things. In: 2015 3rd International Conference on Future Internet of Things and Cloud (FiCloud), pp. 80–86 (2015)Google Scholar
  66. 66.
    Abuzainab, N., Saad, W., Hong, C.-S., Poor, H. V.: Cognitive hierarchy theory for distributed resource allocation in the Internet of Things, arXiv preprint arXiv:1703.07418, (2017)
  67. 67.
    Kim, M., Ko, I.-Y.: An efficient resource allocation approach based on a genetic algorithm for composite services in IoT environments. In: 2015 IEEE International Conference on Web Services (ICWS), pp. 543–550 (2015)Google Scholar
  68. 68.
    Angelakis, V., Avgouleas, I., Pappas, N., Yuan, D.: Flexible allocation of heterogeneous resources to services on an IoT device. In: 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 99–100 (2015)Google Scholar
  69. 69.
    Usharani, S., Saravanan, D., Parthiban, R.: Resource allocation through energy in IOT network. IJSRCSEIT 2(3), 2456 (2017)Google Scholar
  70. 70.
    Thomas, D., Irvine, J.: Connection and resource allocation of IoT sensors to cellular technology-LTE. In: 2015 11th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), pp. 365–368 (2015)Google Scholar
  71. 71.
    Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., Gu, Z.: Online optimization for scheduling preemptable tasks on IaaS cloud systems. J. Parallel Distrib. Comput. 72, 666–677 (2012)CrossRefGoogle Scholar
  72. 72.
    de Vasconcelos, D. R., de Castro Andrade, R. M., de Souza, J. N.: Smart shadow–an autonomous availability computation resource allocation platform for Internet of Things in the fog computing environment. In: 2015 International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 216–217 (2015)Google Scholar
  73. 73.
    Hassanalieragh, M., Page, A., Soyata, T., Sharma, G., Aktas, M., Mateos, G.: Health monitoring and management using Internet-of-Things (IoT) sensing with cloud-based processing: Opportunities and challenges. In: 2015 IEEE International Conference on Services Computing (SCC), pp. 285–292 (2015)Google Scholar
  74. 74.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660 (2013)CrossRefGoogle Scholar
  75. 75.
    Rui, J., Danpeng, S.: Architecture design of the Internet of Things based on cloud computing. In: 2015 Seventh International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), pp. 206–209 (2015)Google Scholar
  76. 76.
    Colistra, G., Pilloni, V., Atzori, L.: The problem of task allocation in the Internet of Things and the consensus-based approach. Comput. Netw. 73, 98–111 (2014)CrossRefGoogle Scholar
  77. 77.
    Kliem, A., Kao, O.: The Internet of Things resource management challenge. In: 2015 IEEE International Conference on Data Science and Data Intensive Systems (DSDIS), pp. 483–490 (2015)Google Scholar
  78. 78.
    Nahir, A., Orda, A., Raz, D.: Resource allocation and management in cloud computing. In: 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 1078–1084 (2015)Google Scholar
  79. 79.
    Kim, S.: Asymptotic shapley value based resource allocation scheme for IoT services. Comput. Netw. 100, 55–63 (2016)CrossRefGoogle Scholar
  80. 80.
    Yalong, W., Xi, L., Heli, Z., Ke, W.: Resource allocation scheme based on game theory in heterogeneous networks. J. China Univ. Posts Telecommun. 23, 57–88 (2016)CrossRefGoogle Scholar
  81. 81.
    Singh, A., Viniotis, Y.: An SLA-based resource allocation for IoT applications in cloud environments. In: Cloudification of the Internet of Things (CIoT), pp. 1–6 (2016)Google Scholar
  82. 82.
    Yuan, X., Min, G., Yang, L.T., Ding, Y., Fang, Q.: A game theory-based dynamic resource allocation strategy in geo-distributed datacenter clouds. Future Gener. Comput. Syst. 76, 63–72 (2017)CrossRefGoogle Scholar
  83. 83.
    Samie, F., Tsoutsouras, V., Bauer, L., Xydis, S., Soudris, D., Henkel, J.: Computation offloading and resource allocation for low-power IoT edge devices. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 7–12 (2016)lGoogle Scholar
  84. 84.
    Del Fiorentino, P., Vitiello, C., Lottici, V., Debels, E., Van Hecke, J., Moeneclaey M.: Resource allocation in short packets BIC-UFMC transmission for internet of things. In: 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2016)Google Scholar
  85. 85.
    do Nascimento, N.M., de Lucena, C.J.P.: FIoT: an agent-based framework for self-adaptive and self-organizing applications based on the Internet of Things. Inf. Sci. 378, 161–176 (2017)CrossRefGoogle Scholar
  86. 86.
    Li, J., Sun, Q., Fan, G.: Resource allocation for multiclass service in IoT uplink communications. In: 2016 3rd International Conference on Systems and Informatics (ICSAI), pp. 777–781 (2016)Google Scholar
  87. 87.
    Zeng, X., Garg, S.K., Strazdins, P., Jayaraman, P.P., Georgakopoulos, D., Ranjan, R.: IOTSim: a simulator for analysing IoT applications. J. Syst. Archit. 72, 93–107 (2017)CrossRefGoogle Scholar
  88. 88.
    Mardani, M. R., Mohebi, S., Bobarshad, H.: Robust uplink resource allocation in LTE networks with M2 M devices as an infrastructure of Internet of Things. In: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), pp. 186–193 (2016)Google Scholar
  89. 89.
    Sheikholeslami, F., Navimipour, N.J.: Service allocation in the cloud environments using multi-objective particle swarm optimization algorithm based on crowding distance. Swarm Evolut. Comput. 35, 53–64 (2017)CrossRefGoogle Scholar
  90. 90.
    Xiong, X., Hou, L., Zheng, K., Xiang, W., Hossain, M.S., Rahman, S.M.M.: Smdp-based radio resource allocation scheme in software-defined internet of things networks. IEEE Sens. J. 16, 7304–7314 (2016)CrossRefGoogle Scholar
  91. 91.
    da Mata, S.H., Guardieiro, P.R.: Resource allocation for the LTE uplink based on Genetic Algorithms in mixed traffic environments. Comput. Commun. 107, 125–137 (2017)CrossRefGoogle Scholar
  92. 92.
    Aazam, M., St-Hilaire, M., Lung, C.-H., Lambadaris, I.: Pre-fog: Iot trace based probabilistic resource estimation at fog. In: 2016 13th IEEE Annual on Consumer Communications & Networking Conference (CCNC), pp. 12–17 (2016)Google Scholar
  93. 93.
    Kim, Y.-J., Choi, H.-H., Lee, J.-R.: A bioinspired fair resource-allocation algorithm for TDMA-based distributed sensor networks for IoT. Int. J. Distrib. Sens. Netw. (2016). Google Scholar
  94. 94.
    Rullo, A., Midi, D., Serra, E., Bertino, E.: Strategic security resource allocation for internet of things. In: 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS), pp. 737–738 (2016)Google Scholar
  95. 95.
    Alsaffar, A.A., Pham, H.P., Hong, C.-S., Huh, E.-N., Aazam, M.: An architecture of IoT service delegation and resource allocation based on collaboration between fog and cloud computing. Mob. Inf. Syst. (2016). Google Scholar
  96. 96.
    Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F.R., Han, Z.: Computing resource allocation in three-tier IoT fog networks: a joint optimization approach combining stackelberg game and matching. IEEE Internet Things J. 4(5), 1204–1215 (2017)CrossRefGoogle Scholar
  97. 97.
    Tsiropoulou, E. E., Paruchuri, S. T., Baras, J. S.: Interest, energy and physical-aware coalition formation and resource allocation in smart IoT applications. In: 2017 51st Annual Conference on Information Sciences and Systems (CISS), pp. 1–6 (2017)Google Scholar
  98. 98.
    Hamidouche, K., Saad, W., Debbah, M.:Popular matching games for correlation-aware resource allocation in the internet of things. In: IEEE International Symposium on Information Theory (ISIT) submitted to IEEE (2017)Google Scholar
  99. 99.
    Li, S., Zhang, N., Lin, S., Kong, L., Katangur, A., Khan, M.K.: Joint admission control and resource allocation in edge computing for internet of things. IEEE Netw. 32, 72–79 (2018)CrossRefGoogle Scholar
  100. 100.
    Hassan, S., Kamboh, A. A., Azam, F.: Analysis of cloud computing performance, scalability, availability, & security. In: 2014 International Conference on Information Science and Applications (ICISA), pp. 1–5 (2014)Google Scholar
  101. 101.
    Xiong, K., Perros, H.: Service performance and analysis in cloud computing. In: 2009 World Conference on Services-I, pp. 693–700 (2009)Google Scholar
  102. 102.
    Faragardi, H. R., Shojaee, R., Tabani, H., Rajabi, A.: An analytical model to evaluate reliability of cloud computing systems in the presence of QoS requirements. In: 2013 IEEE/ACIS 12th International Conference On Computer and Information Science (ICIS), pp. 315–321 (2013)Google Scholar
  103. 103.
    Duan, R., Chen, X., Xing, T.: A QoS architecture for IoT. In: 2011 International Conference on and 4th International Conference on Cyber, Physical and Social Computing Internet of Things (iThings/CPSCom), pp. 717–720 (2011)Google Scholar
  104. 104.
    Ardagna, D., Casale, G., Ciavotta, M., Pérez, J.F., Wang, W.: Quality-of-service in cloud computing: modeling techniques and their applications. J. Internet Serv. Appl. 5, 11 (2014)CrossRefGoogle Scholar
  105. 105.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context-aware computing for the internet of things: a survey. IEEE Commun. Surv. Tutor. 16, 414–454 (2014)CrossRefGoogle Scholar
  106. 106.
    Patel, P., Ranabahu, A. H., Sheth, A. P.: Service level agreement in cloud computing. (2009)
  107. 107.
    Buyya, R., Beloglazov, A., Abawajy, J.: Energy-efficient management of data center resources for cloud computing: a vision, architectural elements, and open challenges, arXiv preprint arXiv:1006.0308, (2010)
  108. 108.
    Beloglazov, A., Buyya, R.: Energy-efficient resource management in virtualized cloud data centers. In: Proceedings of the 2010 10th IEEE/ACM international conference on cluster, cloud and grid computing, pp. 826–831 (2010)Google Scholar
  109. 109.
    Marjani, M., Nasaruddin, F., Gani, A., Shamshirband, S.: Measuring transaction performance based on storage approaches of Native XML database. Measurement 114, 91–101 (2018)CrossRefGoogle Scholar
  110. 110.
    Kagermann, H., Helbig, J., Hellinger, A., Wahlster W.: Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group: Forschungsunion (2013)Google Scholar
  111. 111.
    Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp. 3928–3937 (2016)Google Scholar
  112. 112.
    Jasperneite, J.: Was hinter Begriffen wie Industrie 4.0 steckt. Comput. Autom. 12, 24–28 (2012)Google Scholar
  113. 113.
    Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6, 239–242 (2014)CrossRefGoogle Scholar
  114. 114.
    Daugherty, P., Banerjee, P., Negm, W., Allan, E.: Alter. 2015. “Driving Unconventional Growth through the Industrial Internet of Things.” Accenture,” edGoogle Scholar
  115. 115.
    Choo, K.-K.R., Gritzalis, S., Park, J.H.: Cryptographic solutions for industrial Internet-of-Things: research challenges and opportunities. IEEE Trans. Indus. Inf. 14(8), 3567–3569 (2018)CrossRefGoogle Scholar
  116. 116.
    Forsström, S., Buton, I., Eldefrawy, M., Jennehag, U., Gidlund, M.: Challenges of Securing the Industrial Internet of Things Value Chain. I: Workshop on Metrology for Industry 4.0 and IoT (2018)Google Scholar
  117. 117.
    Dey, N., Hassanien, A.E., Bhatt, C., Ashour, A., Satapathy, S.C.: Internet of Things and Big Data Analytics Toward Next-Generation Intelligence. Springer, New York (2018)CrossRefGoogle Scholar
  118. 118.
    Reddy, B.R., Sujith, A.: A comprehensive literature review on data analytics in IIoT (Industrial Internet of Things). HELIX 8, 2757–2764 (2018)CrossRefGoogle Scholar
  119. 119.
  120. 120.
    Dorri, A., Kanhere, S. S., Jurdak, R.: Blockchain in internet of things: challenges and solutions. arXiv preprint arXiv:1608.05187 (2016)
  121. 121.
    Swan, M.: Blockchain: Blueprint for a new economy. O’Reilly Media Inc, Cambridge (2015)Google Scholar
  122. 122.
    Ron D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: International Conference on Financial Cryptography and Data Security, pp. 6–24 (2013)Google Scholar
  123. 123.
    Banafa, A.: IoT and Blockchain Convergence: Benefits and Challenges, 10 Jan, 2017Google Scholar
  124. 124.
    Butler, B.: What’s the difference between SDN and NFV?, July 10, 2017Google Scholar
  125. 125.
    Bonfim, M. S., Dias, K. L., Fernandes, S. F.: Integrated NFV/SDN architectures: a systematic literature review, arXiv preprint arXiv:1801.01516 (2018)
  126. 126.
    Schiller, E., Nikaein, N., Kalogeiton, E., Gasparyan, M., Braun, T.: CDS-MEC: NFV/SDN-based application management for MEC in 5G Systems. Comput. Netw. 135, 96–107 (2018)CrossRefGoogle Scholar
  127. 127.
    Li, S., Xu, L.D., Zhao, S.: 5G internet of things: a survey. J. Indus. Inf. Integr. (2018). Google Scholar
  128. 128.
    Akpakwu, G.A., Silva, B.J., Hancke, G.P., Abu-Mahfouz, A.M.: A survey on 5G networks for the Internet of Things: communication technologies and challenges. IEEE Access 6, 3619–3647 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer EngineeringSabzevar BranchSabzevarIran
  2. 2.Department of Computer EngineeringTabriz BranchTabrizIran
  3. 3.Department of Computer Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  4. 4.Information Technology DepartmentUniversity of Human DevelopmentSulaimaniyahIraq

Personalised recommendations