Advertisement

Cluster Computing

, Volume 22, Issue 3, pp 877–886 | Cite as

A scalable parallel implementation of the Cluster Benders Decomposition algorithm

  • Jordi Mateo
  • Lluís M. Plà
  • Francesc SolsonaEmail author
  • Adela Pagès
Article
  • 90 Downloads

Abstract

Benders Decomposition (BD) is a method used to solve stochastic linear problems via scenario analysis. Cluster BD (CBD) is one of its smart improvements that speed up the execution time, taking advantage of tighter feasible cuts found by grouping scenarios into clusters. In this paper, we propose a new design for CBD, one which takes into account the role played by optimal cuts in the solution. Besides, we propose a new parallel scheme for CBD to deal with large-scale two-stage stochastic linear problems. Moreover, we characterise the problems for which our proposal performs best. The results obtained show computational gains from our proposal compared with the plain use of CPLEX, serial BD, parallel BD, serial CBD and parallel CBD.

Keywords

Stochastic linear optimization Parallelization Scalability Clustering in stochastic optimzation Benders Decomposition 

Notes

Acknowledgements

The Ministerio de Economía y Competitividad supported this work under contract TIN2017-84553-C2-2-R. Lluis M. Pla-Aragones wishes to acknowledge the financial support of the Spanish Research Program TRA2013-48180-C3-P. Some authors are members of the research group 2017-SGR363, funded by the Generalitat de Catalunya. Besides, this research is partly supported by the European Union FEDER (CAPAP-H6 network TIN2016-81840-REDT).

References

  1. 1.
    Sinha, S.M.: Mathematical Programming: Theory and Methods. Elsevier, Berkeley (2005)Google Scholar
  2. 2.
    Solveling, G., Clarke, J.-P.: Scheduling of airport runway operations using stochastic branch and bound methods. Transp. Res. Part C 45, 137–199 (2014)CrossRefGoogle Scholar
  3. 3.
    Burger, M., Graeber, B., Schindlmayr, G.: Stochastic Models for Electricity and Gas. Managing Energy Risk: A Practical Guide for Risk Management in Power, Gas and Other Energy Markets, Second Edition, 253–299 (2014)Google Scholar
  4. 4.
    Oliveira, F., Grossmann, I.E., Hamacher, S.: Accelerating benders stochastic decomposition for the optimization under uncertainty of the petroleum product supply chain. Comput. Oper. Res. 49, 47–58 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wallace, S., Ziemba, W.T.: Applications of Stochastic Programming. Society for Industrial Mathematics, Philadelphia (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming, 2nd edn. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Watson, J.P., Woodruff, D.L.: Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems. Comput. Manag. Sci. 8(4), 355–370 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kim, K., Zavala, V.M.: Algorithmic innovations and software for the dual decomposition method applied to stochastic mixed-integer programs. Math. Progr. Comput. 63, 1–42 (2017)Google Scholar
  9. 9.
    Escudero, L.F., Garín, M.A., Unzueta, A.: Cluster Lagrangean Decomposition in multistage stochastic optimization. Comput. Oper. Res. 67, 48–62 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Benders, J.: Partitioning procedures for solving mixed variables programming problems. Numer. Math. 4, 238–252 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: The Benders Decomposition algorithm: a literature review. Eur. J. Oper. Res. 259(3), 801–817 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Van Slyke, R., Wets, R.J.-B.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17, 638–663 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wolf, C., Koberstein, K.: Dynamic sequencing and cut consolidation for the parallel hybrid-cut nested L-shaped method. Eur. J. Oper. Res. 230, 143–156 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rahmaniani, R., Crainic, T., Gendreau, M., Rei, W.: A Benders Decomposition method for two-stage stochastic network design problems. CIRRELT, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport=Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (2017)Google Scholar
  15. 15.
    Aranburu, L., Escudero, L., Garin, A., Perez, G.: A so-called Cluster Benders Decomposition approach for solving two-stage stochastic linear problems. TOP 20, 279–295 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    You, F., Grossman, I.E.: Multicut Benders Decomposition algorithm for process supply chain planning under uncertainty. Ann. Oper. Res. 210, 191–211 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. (2018). http://www.gurobi.com
  18. 18.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LleidaLleidaSpain
  2. 2.Department of MathematicsUniversity of LleidaLleidaSpain

Personalised recommendations