Cluster Computing

, Volume 22, Issue 3, pp 693–703 | Cite as

On efficient virtual network function chaining in NFV-based telecommunications networks

  • Carlos Galdamez
  • Raj Pamula
  • Zilong YeEmail author


Network function virtualization enables the softwarization of network functions on standardized commodity hardware, which is promising to help the network carriers to achieve a lower investment cost, a shorter time to deployment, as well as a more flexible and dynamic way of network configuration and management. One of the key challenges is how to efficiently place and chain the software-based virtual network functions in the physical substrate to provision the requested network service while minimizing the physical network cost. In this paper, we mathematically formulate the virtual network function chaining problem using Integer Linear Programming (ILP), in order to facilitate an optimal solution. We propose a set of centralized algorithms to efficiently minimize the physical network cost. The proposed Close To Destination (CTD) algorithm can achieve a near-optimal physical network cost that is close to the optimal result obtained from the ILP solution, but with a very low computational complexity. In addition, we propose a distributed algorithm, called Look Ahead (LA), which plans ahead and jointly considers multiple next-hops VNF requirements to facilitate an efficient VNF chain forwarding decision. Comprehensive simulations are conducted to evaluate the proposed approaches, and the results demonstrate the effectiveness of the proposed CTD algorithm and the distributed LA algorithm.


Network function virtualization Virtual network function chaining Look ahead 


  1. 1.
    ETSI Industry Specification Group (ISG): NFV, ETSI group specifications on network function virtualization. (2015)
  2. 2.
    Mijumbi, R., Serrat, J., Gorricho, J., Bouten, N., Turck, F.D., Boutaba, R.: Network function virtualization: state-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 18(1), 236–262 (2016)CrossRefGoogle Scholar
  3. 3.
    Han, B., Gopalakrishnan, V., Ji, L., Lee, S.: Network function virtualization: challenges and opportunities for innovations. IEEE Commun. Mag. 53(2), 90–97 (2015)CrossRefGoogle Scholar
  4. 4.
    Halpern, J., Pignataro, C.: Service function chaining (SFC) architecture, IETF RFC 7665. (2015)
  5. 5.
    Quinn, P., Nadeau, T.: Problem statement for service function chaining, IETF RFC 7498. (2015)
  6. 6.
    Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethink virtual network embedding: substrate support for path splitting and migration. ACM SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008)CrossRefGoogle Scholar
  7. 7.
    Chowdhury, N.M.M.K., Rahman, M.R., Boutaba, R.: Virtual network embedding with coordinated node and link mapping. In: Proceedings of INFOCOM’09, pp. 783–791 (2009)Google Scholar
  8. 8.
    Gong, L., Jiang, H., Wang, Y., Zhu, Z.: Novel location-constrained virtual network embedding (LC-VNE) algorithms towards integrated node and link mapping. IEEE/ACM Trans. Netw. 24(6), 3648–3661 (2016)CrossRefGoogle Scholar
  9. 9.
    Sun, G., Liao, D., Zhao, D., Sun, Z., Chang, V.: Towards provisioning hybrid virtual networks in federated cloud data centers. Future Gener. Comput. Syst. (2017)
  10. 10.
    Zhao, Y., Li, S., Song, Y., Sun, J., Zhang, J.: Virtual optical network provisioning with unified service logic processing model for software-defined multidomain optical networks. Opt. Eng. 54(12), 126110 (2015). CrossRefGoogle Scholar
  11. 11.
    Moens, H., Turck, F.D.: VNF-P: a model for efficient placement of virtualized network functions. In: Proceedings of CNSM’14, pp. 418–423 (2014)Google Scholar
  12. 12.
    Mehraghdam, S., Keller, M., Karl, H.: Specifying and placing chains of virtual network functions. In: Proceedings of CloudNet’14, pp. 7–13 (2014)Google Scholar
  13. 13.
    Ghaznavi, M., Khan, A., Shahriar, N., Alsubhi, K., Ahmed, R., Boutaba, R.: Elastic virtual network function placement. In: Proceedings of CloudNet’15, pp. 255–260 (2015)Google Scholar
  14. 14.
    Mijumbi, R., Serrat, J., Gorricho, J., Bouten, N., Turck, F.D., Davy, S.: Design and evaluation of algorithms for mapping and scheduling of virtual network functions. In: Proceedings of NetSoft’15, pp. 1–9 (2015)Google Scholar
  15. 15.
    Gupta, A., Habib, M.F., Chowdhury, P., Tornatore, M., Mukherjee, B., On service chaining using virtual network functions in network-enabled cloud systems. In: Proceedings of ANTS’15, pp. 1–3 (2015)Google Scholar
  16. 16.
    Bari, F., Chowdhury, S.R., Ahmed, R., Boutaba, R., Duarte, O.: Orchestrating virtualized network functions. IEEE Trans. Netw. Serv. Manag. 13(4), 725–739 (2016)CrossRefGoogle Scholar
  17. 17.
    Mills, D.L., Braun, H.: The NSFNET backbone network. In: Proceedings of ACM SIGCOMM’87, pp. 191–196 (1987)Google Scholar
  18. 18.
    Xie, W., Jue, J.P., Zhang, Q., Wang, X., She, Q., Palacharla, P., Sekiya, M.: Survivable virtual optical network mapping in flexible-grid optical networks. In: Proceedings of ICNC’14, pp. 221–225 (2014)Google Scholar
  19. 19.
    Kong, J., Hong, S., Jue, J., Kim, I., Wang, X., Zhang, Q., Cankaya, H.C., Xie, W., Ikeuchi, T.: Availability-guaranteed virtual optical network mapping with selective path protection. In: Proceedings of OFC’16 (2016)Google Scholar
  20. 20.
    Kong, J., Jue, J., Kim, I., Wang, X., Zhang, Q., Cankaya, H.C., Xie, W., Ikeuchi, T.: Availability-guaranteed virtual optical network mapping with shared backup path protection. In: Proceedings of GLOBECOM’16 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.California State University, Los AngelesLos AngelesUSA

Personalised recommendations