Advertisement

Cluster Computing

, Volume 22, Issue 4, pp 1073–1083 | Cite as

A novel parallel and distributed magnetotelluric inversion algorithm on multi-threads workloads cluster

  • Lili He
  • Jin Wang
  • Hongtao BaiEmail author
  • Yu Jiang
  • Tonglin Li
Article
  • 157 Downloads

Abstract

Different domains of research are moving to cloud computing whether to carry out compute intensive experiments or to store large datasets. Large-scale computation in geophysical exploration is often inefficient, especially in the Just-in-time (JIT) environment. To alleviate this, we devised a new parallel magnetotelluric inversion method on high performance computing (HPC) multi-threads workloads cluster. This parallel algorithm adapted to single CPU or PC clusters with multi-threads workloads allocates different waves to each thread in a coarse-gained mode. In all multi-threads, the master thread deals with all parallel tasks, and other slave threads compute the electromagnetic field values of each wave in a parallel fork-join model. Experiments show that the proposed parallel algorithm not only achieves effective data accuracy, but is more efficient than the serial version.

Keywords

HPC Multi-threads workloads cluster Coarse-grained parallelization Magnetotelluric 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61872160, 51679105, 61672261).

References

  1. 1.
    Choi, S.: Understanding people with human activities and social interactions for human-centered computing. Hum.-Centric Comput. Inf. Sci. 6(1), 1–10 (2016)MathSciNetGoogle Scholar
  2. 2.
    Coggon, J.: Electromagnetic and electrical modeling by the finite element method. Geophysics 36(1), 132–155 (1971)Google Scholar
  3. 3.
    Cole, K.S., Cole, R.H.: Dispersion and absorption in dielectrics i. alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941)Google Scholar
  4. 4.
    Da, L., Xiaoping, W., Qingyun, D., Gang, W., Xiangrong, L., Ruo, W., Jun, Y., Mingxin, Y.: Modeling and analysis of csamt field source effect and its characteristics. J. Geophys. Eng. 13(1), 49 (2016)Google Scholar
  5. 5.
    Di, Q.Y., Martyn, U., Wang, M.Y.: 2.5-d csamt modeling with finite element method over 2-d complex earth media. Chin. J. Geophys. 47(4), 825–829 (2004)Google Scholar
  6. 6.
    Di-Quan, L., Guang-Jie, W., Qing-Yun, D., Miao-Yue, W., Ruo, W.: The application of genetic algorithm to csamt inversion for minimum structure. Chin. J. Geophys.-Chin. Ed. 51(4), 1234–1245 (2008)Google Scholar
  7. 7.
    Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. (2015)  https://doi.org/10.1109/TPDS.2015.2506573 Google Scholar
  8. 8.
    Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27(9), 2546–2559 (2016)Google Scholar
  9. 9.
    Fubiani, G., Garrigues, L., Boeuf, J., Qiang, J.: Developpment of a hybrid mpi/openmp massivelly parallel 3d particle-in-cell model of a magnetized plasma source. In: 2015 IEEE International Conference on Plasma Sciences (ICOPS), pp. 1–1 (2015)Google Scholar
  10. 10.
    Grilli, S.T., Harris, J.C., Bakhsh, T.S.T., Masterlark, T.L., Kyriakopoulos, C., Kirby, J.T., Shi, F.: Numerical simulation of the 2011 tohoku tsunami based on a new transient fem co-seismic source: comparison to far-and near-field observations. Pure Appl. Geophys. 170(6–8), 1333–1359 (2013)Google Scholar
  11. 11.
    Guo, X., Lange, M., Gorman, G., Mitchell, L., Weiland, M.: Developing a scalable hybrid mpi/openmp unstructured finite element model. Comput. Fluids 110, 227–234 (2015)zbMATHGoogle Scholar
  12. 12.
    Gupta, A., Milojicic, D.: Evaluation of hpc applications on cloud. In: 2011 Sixth on Open Cirrus Summit (OCS), pp. 22–26 (2011)Google Scholar
  13. 13.
    Hagenmuller, P., Theile, T.C., Schneebeli, M.: Numerical simulation of microstructural damage and tensile strength of snow. Geophys. Res. Lett. 41(1), 86–89 (2014)Google Scholar
  14. 14.
    Handong, T., Tuo, T., Changhong, L.: The parallel 3d magnetotelluric forward modeling algorithm. Appl. Geophys. 3(4), 197–202 (2006)Google Scholar
  15. 15.
    Hassan, H.A., Mohamed, S.A., Sheta, W.M.: Scalability and communication performance of hpc on azure cloud. Egypt. Inf. J. 17, 175–182 (2016)Google Scholar
  16. 16.
    Jermain, C., Rowlands, G., Buhrman, R., Ralph, D.: Gpu-accelerated micromagnetic simulations using cloud computing. J. Magn. Magn. Mater. 401, 320–322 (2016)Google Scholar
  17. 17.
    Jiang, Y., Gou, Y., Zhang, T., Wang, K., Hu, C.: A machine learning approach to argo data analysis in a thermocline. Sensors 17(10), 2225 (2017)Google Scholar
  18. 18.
    Kar, J., Mishra, M.R.: Mitigating threats and security metrics in cloud computing. J. Inf. Process. Syst. 12(2), 226–233 (2016)Google Scholar
  19. 19.
    Kong, Y., Zhang, M., Ye, D.: A belief propagation-based method for task allocation in open and dynamic cloud environments. Knowl.-Based Syst. 115, 123–132 (2017)Google Scholar
  20. 20.
    Lee, J., Chae, H., Hong, K.: A fainting condition detection system using thermal imaging cameras based object tracking algorithm. JoC 6(3), 1–15 (2015)Google Scholar
  21. 21.
    Li, Y., Hu, X.Y., Yang, W.C., Wei, W.B., Fang, H., Han, B., Peng, R.H.: A study on parallel computation for 3 d magnetotelluric modeling using the staggered-grid finite difference method. Diqiu Wuli Xuebao 55(12), 4036–4043 (2012)Google Scholar
  22. 22.
    Lin, C., Tan, H., Tong, T.: Parallel rapid relaxation inversion of 3d magnetotelluric data. Appl. Geophys. 6(1), 77–83 (2009)Google Scholar
  23. 23.
    Rabenseifner, R., Hager, G., Jost, G.: Hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes. In: 2009 17th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, pp. 427–436 (2009)Google Scholar
  24. 24.
    Ren, H., Chen, X., Huang, Q.: Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media. Geophys. J. Int. 188(3), 925–944 (2012)Google Scholar
  25. 25.
    Ren, Y., Shen, J., Wang, J., Han, J., Lee, S.: Mutual verifiable provable data auditing in public cloud storage. J. Internet Technol. 16(2), 317–323 (2015)Google Scholar
  26. 26.
    Rousset, A., Herrmann, B., Lang, C., Philippe, L.: A survey on parallel and distributed multi-agent systems for high performance computing simulations. Comput. Sci. Rev. (2016)  https://doi.org/10.1016/j.cosrev.2016.08.001 MathSciNetGoogle Scholar
  27. 27.
    Satarić, B., Slavnić, V., Belić, A., Balaž, A., Muruganandam, P., Adhikari, S.K.: Hybrid openmp/mpi programs for solving the time-dependent gross-pitaevskii equation in a fully anisotropic trap. Comput. Phys. Commun. 200, 411–417 (2016)zbMATHGoogle Scholar
  28. 28.
    Shen, J., Shen, J., Chen, X., Huang, X., Susilo, W.: An efficient public auditing protocol with novel dynamic structure for cloud data. IEEE Trans. Inf. Forensics Sec. 12(10), 2402–2415 (2016)Google Scholar
  29. 29.
    Shen, J., Tan, H., Wang, J., Wang, J., Lee, S.: A novel routing protocol providing good transmission reliability in underwater sensor networks. J. Internet Technol. 16(1), 171–178 (2015)Google Scholar
  30. 30.
    Shen, J., Zhou, T., He, D., Zhang, Y., Sun, X., Xiang, Y.: Block design-based key agreement for group data sharing in cloud computing. IEEE Trans. Dependable Secure Comput. PP(99), 1–1 (2017)Google Scholar
  31. 31.
    Stoyer, C., Greenfield, R.J.: Numerical solutions of the response of a two-dimensional earth to an oscillating magnetic dipole source. Geophysics 41(3), 519–530 (1976)Google Scholar
  32. 32.
    Unsworth, M.J., Travis, B.J., Chave, A.D.: Electromagnetic induction by a finite electric dipole source over a 2-d earth. Geophysics 58(2), 198–214 (1993)Google Scholar
  33. 33.
    Virieux, J., Operto, S.: An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6), WCC1–WCC26 (2009)Google Scholar
  34. 34.
    Wang, R., Yin, C., Wang, M., Di, Q.: Laterally constrained inversion for csamt data interpretation. J. Appl. Geophys. 121, 63–70 (2015)Google Scholar
  35. 35.
    Wang, Y., Cai, S., Yin, M.: Two efficient local search algorithms for maximum weight clique problem. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 805–811 (2016)Google Scholar
  36. 36.
    Wang, Y., Cai, S., Yin, M.: Local search for minimum weight dominating set with two-level configuration checking and frequency based scoring function. J. Artif. Intell. Res. 58, 267–295 (2017)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Wang, Y., Li, R., Zhou, Y., Yin, M.: A path cost-based grasp for minimum independent dominating set problem. Neural Comput. Appl. (2016)  https://doi.org/10.1007/s00521-016-2324-6 Google Scholar
  38. 38.
    Wang, Y., Yin, M., Ouyang, D., Zhang, L.: A novel local search algorithm with configuration checking and scoring mechanism for the set k-covering problem. ITOR 24(6), 1463–1485 (2017)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Wang, Y., Zhang, L., Ouyang, D., Yin, M.: A novel local search for unicost set covering problem using hyperedge configuration checking and weight diversity. Sci. China 60(6), 062,103 (2017)Google Scholar
  40. 40.
    Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2016)Google Scholar
  41. 41.
    Xianjin, M., Guangshu, B.: A new method for 2.5-dimensional resistivity forward modelling. J. Cent. S. Univ. Technol. 28(4), 307–310 (1997)Google Scholar
  42. 42.
    Xie, S., Wang, Y.: Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wirel. Pers. Commun. 78(1), 231–246 (2014)Google Scholar
  43. 43.
    Xue, G., Yan, S., Gelius, L., Chen, W., Zhou, N., Li, H.: Discovery of a major coal deposit in china with the use of a modified csamt method. J. Environ. Eng. Geophys. 20(1), 47–56 (2015)Google Scholar
  44. 44.
    Zhangjie, F., Xingming, S., Qi, L., Lu, Z., Jiangang, S.: Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans. Commun. 98(1), 190–200 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lili He
    • 1
    • 2
  • Jin Wang
    • 3
    • 4
  • Hongtao Bai
    • 1
    • 2
    • 5
    Email author
  • Yu Jiang
    • 1
    • 2
  • Tonglin Li
    • 6
  1. 1.College of Computer Science and TechnologyJilin UniversityChangchunChina
  2. 2.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of EducationJilin UniversityChangchunChina
  3. 3.College of Information EngineeringYangzhou UniversityYangzhouChina
  4. 4.School of Computer and SoftwareNanjing University of Information Science and TechnologyNanjingChina
  5. 5.Center for Computer Fundamental EducationJilin UniversityChangchunChina
  6. 6.College of Earth Survey Science and TechnologyJilin UniversityChangchunChina

Personalised recommendations