Cluster Computing

, Volume 21, Issue 4, pp 1899–1915 | Cite as

A self-scalable distributed network simulation environment based on cloud computing

  • Sergio Serrano-Iglesias
  • Eduardo Gómez-SánchezEmail author
  • Miguel L. Bote-Lorenzo
  • Juan I. Asensio-Pérez
  • Manuel Rodríguez-Cayetano


While parameter sweep simulations can help undergraduate students and researchers to understand computer networks, their usage in the academia is hindered by the significant computational load they convey. This paper proposes DNSE3, a service oriented computer network simulator that, deployed in a cloud computing infrastructure, leverages its elasticity and pay-per-use features to compute parameter sweeps. The performance and cost of using this application is evaluated in several experiments applying different scalability policies, with results that meet the demands of users in educational institutions. Additionally, the usability of the application has been measured following industry standards with real students, yielding a very satisfactory user experience.


Computer networks simulation Automatic scalability Cloud computing applications 



This work has been partially funded by the Spanish State Research Agency and the European Regional Development Fund (Grants TIN2014-53199-C3-2-R and TIN2017-85179-C3-2-R) and the Regional Government of Castilla y León (Grant VA082U16, co-financed by the European Regional Development Fund)


  1. 1.
    Amazon Web Services, Inc.: Amazon Web Services.
  2. 2.
    Amazon Web Services, Inc.: What is Amazon EC2 Auto Scaling?
  3. 3.
    Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammed multiprocessors. In: ACM Symposium on Parallel Algorithms and Architectures, pp. 119–129 (1998).
  4. 4.
    Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale. Int. J. Hum. Comput. Interact. 24(6), 574–594 (2008). CrossRefGoogle Scholar
  5. 5.
    Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: SUMO—simulation of urban mobility. In: International Conference on Advances in System Simulation, pp. 63–68 (2011)Google Scholar
  6. 6.
    Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. J. ACM 46(5), 720–748 (1999). MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bootstrap: an open source toolkit for developing with HTML, CSS, and JS.
  8. 8.
    Bote-Lorenzo, M.L., Asensio-Pérez, J.I., Gómez-Sánchez, E., Vega-Gorgojo, G., Alario-Hoyos, C.: A grid service-based distributed network simulation environment for computer networks education. Comput. Appl. Eng. Educ. 20(4), 654–665 (2012). CrossRefGoogle Scholar
  9. 9.
    Bragard, Q., Ventresque, A., Murphy, L.: Self-balancing decentralized distributed platform for urban traffic simulation. IEEE Trans. Intell. Transp. Syst. 18(5), 1190–1197 (2017). CrossRefGoogle Scholar
  10. 10.
    Brooke, J.: SUS: a quick and dirty usability scale. In: Jordan, P.W., Thomas, B., McClelland, I.L., Weerdmeester, B. (eds.) Usability Evaluation in Industry, pp. 189–194. Taylor & Francis, London (1996)Google Scholar
  11. 11.
    Brooke, J.: SUS: a retrospective. J. Usability Studies 8(2), 29–40 (2013)Google Scholar
  12. 12.
    Caglar, F., Shekhar, S., Gokhale, A., Basu, S., Rafi, T., Kinnebrew, J., Biswas, G.: Cloud-hosted simulation-as-a-service for high school STEM education. Simul. Modell. Pract. Theory 58, 255–273 (2015). CrossRefGoogle Scholar
  13. 13.
    Calcavecchia, N.M., Caprarescu, B.A., Di Nitto, E., Dubois, D.J., Petcu, D.: Depas: a decentralized probabilistic algorithm for auto-scaling. Computing 94(8), 701–730 (2012). CrossRefzbMATHGoogle Scholar
  14. 14.
    Cao, Y., Jin, X., Li, Z.: A distributed simulation system and its application. Simul. Modell. Prac. Theory 15(1), 21–31 (2007). CrossRefGoogle Scholar
  15. 15.
    Evangelidis, A., Parker, D., Bahsoon, R.: Performance modelling and verification of cloud-based auto-scaling policies. In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 355–364 (2017).
  16. 16.
    Fielding, R.T.: Architectural syles and the design of network-based software architectures. Ph.D. thesis, University of California, Irvine (2000)Google Scholar
  17. 17.
    Foster, I.: Globus toolkit version 4: software for service-oriented systems. J. Comput. Sci. Technol. 21(4), 513 (2006). CrossRefGoogle Scholar
  18. 18.
    Fujimoto, R.M.: Research challenges in parallel and distributed simulation. ACM Trans. Modell. Comput. Simul. (2016). MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fujimoto, R.M., Malik Fujimoto, R.M., Malik, A.W.: Parallel and distributed simulation in the cloud. SCS Modell. Simul. Mag. 1(3), 1–10 (2010)Google Scholar
  20. 20.
    Ghanbari, H., Simmons, B., Litoiu, M., Iszlai, G.: Exploring alternative approaches to implement an elasticity policy. In: 2011 IEEE 4th International Conference on Cloud Computing, pp. 716–723 (2011).
  21. 21.
    González-Martínez, J.A., Bote-Lorenzo, M.L., Gómez-Sánchez, E., Cano-Parra, R.: Cloud computing and education: a state-of-the-art survey. Comput. Educ. 80, 132–151 (2015). CrossRefGoogle Scholar
  22. 22.
    Google LLC: Google App Engine.
  23. 23.
    Hasan, M.Z., Magana, E., Clemm, A., Tucker, L., Gudreddi, S.L.D.: Integrated and autonomic cloud resource scaling. In: 2012 IEEE Network Operations and Management Symposium, pp. 1327–1334 (2012).
  24. 24.
    Huang, C.S., Tsai, M.F., Huang, P.H., Su, L.D., Lee, K.S.: Distributed asteroid discovery system for large astronomical data. J. Netw. Comput. Appl. 93, 27–37 (2017). CrossRefGoogle Scholar
  25. 25.
    Hüning, C., Adebahr, M., Thiel-Clemen, T., Dalski, J., Lenfers, U., Grundmann, L.: Modeling and simulation as a service with the massive multi-agent system MARS. In: Agent-Directed Simulation Symposium, pp. 1–8 (2016)Google Scholar
  26. 26.
    Indhumathi, V., Nasira, G.M.: Service oriented architecture for load balancing with fault tolerant in grid computing. In: IEEE International Conference on Advances in Computer Applications (ICACA), pp. 313–317 (2016).
  27. 27.
    Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulations and Modelling. Wiley, New York (1991)zbMATHGoogle Scholar
  28. 28.
    Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. McGraw-Hill, New York (1991)zbMATHGoogle Scholar
  29. 29.
    Lewis, J.R.: Usability: lessons learned...and yet to be learned. Int. J. Hum. Comput. Interact. 30(9), 663–684 (2014). CrossRefGoogle Scholar
  30. 30.
    Lin, H.C.K., Chen, M.C., Chang, C.K.: Assessing the effectiveness of learning solid geometry by using an augmented reality-assisted learning system. Interact. Learn. Environ. 23(6), 799–810 (2015). CrossRefGoogle Scholar
  31. 31.
    Martin-Gonzalez, A., Chi-Poot, A., Uc-Cetina, V.: Usability evaluation of an augmented reality system for teaching euclidean vectors. Innov. Educ. Teach. Int. 53(6), 627–636 (2016). CrossRefGoogle Scholar
  32. 32.
    Microsoft: Microsoft Azure.
  33. 33.
    OASIS: OASIS Web Services Resource Framework (WSRF).
  34. 34.
    OpenStack: OpenStack Open Source Cloud Computing Software.
  35. 35.
    Papadopoulos, C., Heidemann, J.: Using ns in the classroom and lab. In: ACM SIGCOMM Workshop on Computer Networking, pp. 45–46. Pittsburgh (2002)Google Scholar
  36. 36.
    Qu, C., Calheiros, R.N., Buyya, R.: A reliable and cost-efficient auto-scaling system for web applications using heterogeneous spot instances. J. Netw. Comput. Appl. 65, 167–180 (2016). CrossRefGoogle Scholar
  37. 37.
    Qun, Z.A., Jun, W.: Application of ns2 in education of computer networks. In: IEEE International Conference on Advanced Computer Theory and Engineering, pp. 368–372 (2008).
  38. 38.
    Ravindhren, V.G., Ravimaran, S.: Ccma–cloud critical metric assessment framework for scientific computing. Clust. Comput. (2017).
  39. 39.
    Restlet, Inc.: Restlet Framework.
  40. 40.
    Roy, N., Dubey, A., Gokhale, A.: Efficient autoscaling in the cloud using predictive models for workload forecasting. In: 2011 IEEE 4th International Conference on Cloud Computing, pp. 500–507 (2011).
  41. 41.
    Tashkandi, A.N., Al-Jabri, I.M.: Cloud computing adoption by higher education institutions in Saudi Arabia: an exploratory study. Clust. Comput. 18(4), 1527–1537 (2015). CrossRefGoogle Scholar
  42. 42.
    The Apache Software Foundation: Apache CloudStack Open Source Cloud Computing.
  43. 43.
    The Network Simulator—ns-2.
  44. 44.
    The Network Simulator—ns-3.
  45. 45.
    Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in the cloud. SIGCOMM Comput. Commun. Rev. 41(1), 45–52 (2011). CrossRefGoogle Scholar
  46. 46.
    Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Cloud scalability: building the millennium falcon. Concurr. Comput. 25(12), 1623–1627 (2013). CrossRefGoogle Scholar
  47. 47.
    Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev. 39(1), 50–55 (2008). CrossRefGoogle Scholar
  48. 48.
    Vinoski, S.: REST eye for the SOA guy. IEEE Internet Comput. 11(1), 82–84 (2007). CrossRefGoogle Scholar
  49. 49.
    Wang, A., Jiang, W.: Teaching wireless local area network course based on ns-3. In: International Symposium on Computer Network and Multimedia Technology, pp. 1–4 (2009).
  50. 50.
    Wang, S.Y., Lin, C.C., Tzeng, Y.S., Huang, W.G., Ho, T.W.: Exploiting event-level parallelism for parallel network simulation on multicore systems. IEEE Trans. Parallel Distrib. Syst. 23(4), 659–667 (2012). CrossRefGoogle Scholar
  51. 51.
    Weingartner, E., vom Lehn, H., Wehrle, K.: A performance comparison of recent network simulators. In: IEEE International Conference on Communications, pp. 1–5 (2009).
  52. 52.
    Zehe, D., Knoll, A., Cai, W., Aydt, H.: Semsim cloud service: large-scale urban systems simulation in the cloud. Simul. Modell. Pract. Theory 58, 157–171 (2015). CrossRefGoogle Scholar
  53. 53.
    Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010). CrossRefGoogle Scholar
  54. 54.
    Zhou, X., Tian, H.: Comparison on network simulation techniques. In: International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp. 313–316 (2016).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Signal Theory, Communications and Telematics Engineering School of Telecommunications EngineeringUniversidad de ValladolidValladolidSpain

Personalised recommendations