Advertisement

Cluster Computing

, Volume 22, Supplement 3, pp 6781–6793 | Cite as

Study of range-extended target detection performance based optimized EBSPK signals

  • Yu YaoEmail author
  • Xuan Li
  • Lenan Wu
Article
  • 69 Downloads

Abstract

Extended-binary phase shift keying (EBSPK)-MODEM radar-communication transceiver is considered as high-range resolution (HRR) radar in the ranging mode. In this paper, a new range-extended target detection method for EBPSK transceiver is investigated. First, the signal to noise ratio (SNR) improved amount of the proposed system is deduced. Secondly, Mean square error (MSE) of target scattering parameter is estimated. The optimal EBPSK waveform is designed to make sure that the estimated performance of the target frequency domain scattering parameters is optimal. Target detection performances of the optimized EBPSK signal in the additive white Gaussian noise (AWGN) channel and the dispersive channel are investigated, respectively. Finally, through optimizing carrier frequency and modulation parameters, the simulation experiment results showed that detection performance of the optimized EBSPK signal is better than the unoptimized EBSPK signal and traditional radar signals.

Keywords

Integration of radar and communication EBPSK modulation Mean square error Range extended target Detection performance 

Notes

Acknowledgements

This work was supported by the national Natural Science Foundation of China (61761019).

Compliance with ethical standards

Conflicts of interest

The authors declared that they have no conflict of interest

References

  1. 1.
    Yao, Y., Wu, L., Zhang, C.: Maneuvering target detection based on JRC system in Gaussian and non-Gaussian clutter. Math. Probl. Eng. (2015).  https://doi.org/10.1155/2015/471305 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Yao, Y., Wu, L.: An EBSPK-/MPPSK-modem based transceiver for radar-communications. Int. J. Aerosp. Eng. (2015).  https://doi.org/10.1155/2015/732172 CrossRefGoogle Scholar
  3. 3.
    Yao, Y., Wu, L.N.: Studies of a dual frequency EBSPK-MODEM based radar communication transceiver. J. Electron. Inf. Technol. 36(8), 1786–1791 (2014)Google Scholar
  4. 4.
    Wu, L., Feng, M.: On BER performance of EBPSK-MODEM in AWGN Channel. Sensors 3(10), 3824–3834 (2010)CrossRefGoogle Scholar
  5. 5.
    Gerlach, K.: Spatially distributed target detection in non-Gaussian clutter. IEEE Trans. Aerosp. Electron. Syst. 35(3), 926–934 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, P., Wu, L.: Joint design transmission waveform and sensing matrix for the compressive sensing radar. In: 9th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2014. IEEE (2014)Google Scholar
  7. 7.
    Leshem, A., Naparstek, O., Nehorai, A.: Information theoretic adaptive radar waveform design for multiple extended targets. IEEE J. Sel. Top. Signal Process. 1(1), 42–55 (2007)CrossRefGoogle Scholar
  8. 8.
    De Maio, Antonio, et al.: Design of optimized radar codes with a peak to average power ratio constraint. IEEE Trans. Signal Process. 59(6), 2683–2697 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    He, Y., et al.: Keystone transform based range-Doppler processing for human target in UWB radar. In: 2014 IEEE Radar Conference. IEEE (2014)Google Scholar
  10. 10.
    Ye, J., Ding, Y.: Controllable keyword search scheme supporting multiple users. Fut. Gener. Comput. Syst. 81, 433–442 (2018)CrossRefGoogle Scholar
  11. 11.
    Deng, X., et al.: Waveform design for enhanced detection of extended target in signal-dependent interference. IET Radar Sonar Navig. 6(1), 30–38 (2012)CrossRefGoogle Scholar
  12. 12.
    Karbasi, S.M., Aubry, A., De Maio, A., et al.: Robust transmit code and receive filter design for extended targets in clutter. IEEE Trans. Signal Process. 63(8), 1965–1976 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Shi, Y.F., Song, T.L., Mušicki, D.: Target tracking in clutter using a high pulse repetition frequency radar. IET Radar Sonar Navig. 9(3), 299–307 (2015)CrossRefGoogle Scholar
  14. 14.
    Kim, B., Yi, K., Yoo, H.J., et al.: An IMM/EKF approach for enhanced multitarget state estimation for application to integrated risk management system. IEEE Trans. Veh. Technol. 64(3), 876–889 (2015)CrossRefGoogle Scholar
  15. 15.
    Tang, B., Tang, J., Peng, Y.: MIMO mdar waveform design in colored noise based on information theory. IEEE Trans. Signal Process. 58(9), 4684–4697 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Luo, Z.Q., Sidiropoulos, N.D., Tseng, P., Zhang, S.: Approximation bounds for quadratic optimization with homogeneous quadratic constraints. SIAM J. Optim. 18, 1–28 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    So, A., Zhang, J., Ye, Y.: On approximating complex quadratic optimization problems via semidefinite programming relaxations. Math. Program. Ser. B 110(1), 93–110 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    De Maio, A., De Nicola, S., Huang, Y., Zhang, S., Farina, A.: Code design to optimize radar detection performance under accuracy and similarity constraints. IEEE Trans. Signal Process. 56(11), 5618–5629 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    De Maio, A., De Nicola, S., Huang, Y., Palomar, D., Zhang, S., Farina, A.: Code design for radar STAP via optimization theory. IEEE Trans. Signal Process. 58(2), 679–694 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    De Maio, A., Huang, Y., Piezzo, M.: A Doppler robust Max-Min approach to radar code design. IEEE Trans. Signal Process. 58(9), 4943–4947 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hong-xing, W., Hong-li, W., Zhong-yang, M., et al.: The demodulation algorithm for EBPSK based on cyclic spectrum characteristic. Chin. J. Radio Sci. 25(5), 935–939 (2010)Google Scholar
  22. 22.
    Li, J., Xu, L., Stoica, P., Forsythe, K.W., Bliss, D.W.: Range compression and waveform optimization for MIMO radar: a Cramér-Rao bound based study. IEEE Trans. Signal Process. 56(1), 218–232 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Naghibi, T., Behnia, F.: MIMO radar waveform design in the presence of clutter. IEEE Trans. Aerosp. Electron. Syst. 47(2), 770–781 (2011)CrossRefGoogle Scholar
  24. 24.
    Jin, B., et al.: Joint optimization of predictive model and transmitted waveform for extended target tracking. In: 2014 12th International Conference on Signal Processing (ICSP). IEEE (2014)Google Scholar
  25. 25.
    Kay, S.: Optimal signal design for detection of Gaussian point targets in stationary Gaussian clutter/reverberation. IEEE J. Sel. Top. Signal Process. 1(1), 31–41 (2007)CrossRefGoogle Scholar
  26. 26.
    Wang, G., Huang, C.: Energy-efficient beaconless real-time routing protocol for wireless sensor networks. Comput. Syst. Sci. Eng. 26(3), 173–186 (2011)Google Scholar
  27. 27.
    Gerlach, K.A.R.L., Kretschmer, F.F.: Convergence properties of Gram–Schmidt and SMI adaptive algorithms. II. IEEE Trans. Aerosp. Electron. Syst. 27(1), 83–91 (1991)CrossRefGoogle Scholar
  28. 28.
    Paulus, A.S., Melvin, W.L., Williams, D.B.: Multistage algorithms for extended dwell target detection. In: 2014 IEEE Radar Conference. IEEE (2014)Google Scholar
  29. 29.
    Xia, Y., et al.: Optimal OFDM waveform design for extended targets detection. In: 2015 8th International Congress on Image and Signal Processing (CISP). IEEE (2015)Google Scholar
  30. 30.
    Zhang, Z., Chan, T.K., Li, K.H.: A semidefinite relaxation approach for beamforming in cooperative clustered multicell systems with novel limited feedback scheme. IEEE Trans. Veh. Technol. 63(4), 1740–1748 (2014)CrossRefGoogle Scholar
  31. 31.
    Yang, Y., Blum, R.: MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Trans. Aerosp. Electron. Syst. 43(1), 330–343 (2007)CrossRefGoogle Scholar
  32. 32.
    Nijsure, Y., Chen, Y., Boussakta, S., Yuen, C., Chew, Y.H., Ding, Z.: Novel system architecture and waveform design for cognitive radar radio networks. IEEE Trans. Veh. Technol. 61(8), 3630–3642 (2012)CrossRefGoogle Scholar
  33. 33.
    Karbasi, S.M., et al.: Design of multiple-input multiple-output transmit waveform and receive filter for extended target detection. IET Radar Sonar Navig. 9(9), 1345–1353 (2015)CrossRefGoogle Scholar
  34. 34.
    Gorji, A.A., et al.: Joint waveform optimization and adaptive processing for random phase radar signals. IEEE Trans. Aerosp. Electron. Syst. 51(4), 2627–2640 (2015)CrossRefGoogle Scholar
  35. 35.
    Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C.: Model-based compressive sensing. IEEE Trans. Inf. Theory 56(35), 1982–2001 (2010)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Jun, F., Hongbin, L.: Block-sparsity pattern recovery from noisy observations. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 3321–3324 (2012)Google Scholar
  37. 37.
    Candes, E., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6), 2313–2351 (2007)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Gongguo, T., Nehorai, A.: Performance analysis of sparse recovery based on constrained minimal singular values. IEEE Trans. Signal Process. 59(4), 5734–5745 (2011)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Wei, D., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55(11), 2230–2249 (2009)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Sen, S., Gongguo, T., Nehorai, A.: Sparsity-based estimation for target detection in multipath scenarios. In: Radar Conference (RADAR), 2011, pp. 303–308. IEEE (2011)Google Scholar
  41. 41.
    Hui, Z., Lizhi, C.: On the constrained minimal singular values for sparse signal recovery. IEEE Signal Process. Lett. 19(19), 499–502 (2012)Google Scholar
  42. 42.
    Bell, M.R.: Information theory and radar waveform design. IEEE Trans. Inf. Theory 39(5), 1578–1597 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information EngineeringEast China Jiaotong UniversityNanchangChina
  2. 2.School of Information Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations