Cluster Computing

, Volume 22, Supplement 6, pp 14731–14741 | Cite as

Dynamic key dependent AES S-box generation with optimized quality analysis

  • Pon. PartheebanEmail author
  • V. Kavitha


Non-linear substitution is the essential step in the most popular Advanced Encryption Standard symmetric-key cryptosystem. Designing substitution boxes (S-boxes) with good quality solution and execution time efficiency are the significant challenges for the researchers for eliminating vulnerable attacks due to the static behavior of S-box. The main aim of this paper is to design a dynamic S-box for attaining the properties of high non-linearity and low autocorrelation. In this paper, a dynamic sub-key dependent S-box design is proposed to overcome the drawbacks of static S-box. The dynamic sub-key is generated based on the data block, so the proposed system is mostly depend on the data to provide more secure against the intruder. The proposed system generate a strong S-box with the good quality solutions and high efficiency in the execution time. The mapping of the non-linear initial S-box with the final sub-key generated S-box based on the cat swarm optimization function, so that the final S-box design is obtained as high non-linearity and low autocorrelation. The simulation performance is analyzed in in terms of solution quality and execution time compared with other relevant approaches.


Advanced encryption standard Autocorrelation Nonlinear transformation Optimization Cryptanalysis 


  1. 1.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Kessler, G.C. (2017). An Overview of Cryptography. Accessed 26 Feb 2017
  3. 3.
    Kocarev, L.: Chaos-based cryptography: a brief overview. IEEE Circuits Syst. Mag. 1(3), 6–21 (2001)CrossRefGoogle Scholar
  4. 4.
    Elbirt, A.J., Paar, C.: An instruction-level distributed processor for symmetric-key cryptography. IEEE Trans. Parallel Distrib. Syst. 16(5), 468–480 (2005)CrossRefGoogle Scholar
  5. 5.
    Odlyzko, A.M.: Public key cryptography. AT&T Tech. J. 73(5), 17–23 (1994)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Harn, L., Mehta, M., Hsin, Wen-Jung: Integrating Diffie-Hellman key exchange into the digital signature algorithm (DSA). IEEE Commun. Lett. 8(3), 198–200 (2004)CrossRefGoogle Scholar
  8. 8.
    Garcia Muzzi, F.A., Barros Chiaramonte, R., Moreno Ordonez, E.D.: The Hardware-based PKCS#11 Standard using the RSA Algorithm. IEEE Latin Am. Trans. 7(2), 160–169 (2009)CrossRefGoogle Scholar
  9. 9.
    Huang, X., Wang, W.: A novel and efficient design for an RSA cryptosystem with a very large key size. IEEE Trans. Circuits Syst. II Express Briefs 62(10), 972–976 (2015)CrossRefGoogle Scholar
  10. 10.
    Hossain, M.S., Kong, Y., Saeedi, E., Vayalil, N.C.: High-performance elliptic curve cryptography processor over NIST prime fields. IET Comput. Digit. Tech. 11(1), 33–42 (2017)CrossRefGoogle Scholar
  11. 11.
    Azarderakhsh, R., Järvinen, K.U., Mozaffari-Kermani, M.: Efficient algorithm and architecture for elliptic curve cryptography for extremely constrained secure applications. IEEE Trans. Circuits Syst. I Regul. Pap. 61(4), 1144–1155 (2014)CrossRefGoogle Scholar
  12. 12.
    Beth, T., Gollman, D.: Algorithm engineering for public key algorithms. IEEE J. Sel. Areas Commun. 7(4), 458–466 (1989)CrossRefGoogle Scholar
  13. 13.
    Harn, L., Mehta, M., Hsin, Wen-Jung: Integrating Diffie-Hellman key exchange into the digital signature algorithm (DSA). IEEE Commun. Lett. 8(3), 198–200 (2004)CrossRefGoogle Scholar
  14. 14.
    Kumar, P.K., Baskaran, K.: An ASIC implementation of low power and high throughput blowfish crypto algorithm. Microelectron. J. 41(6), 347–355 (2010)CrossRefGoogle Scholar
  15. 15.
    Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: The Twofish Encryption Algorithm: A 128-Bit Block Cipher. Wiley, New York (1999)zbMATHGoogle Scholar
  16. 16.
    Coppersmith, D.: The Data Encryption Standard (DES) and its strength against attacks. IBM J. Res. Dev. 38(3), 243–250 (1994)CrossRefGoogle Scholar
  17. 17.
    Jean, J., Nikolić, I., Peyrin, T.:Tweaks and keys for block ciphers: the TWEAKEY framework. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 274–288. Springer, Berlin (2014)Google Scholar
  18. 18.
    Gulcu, C., Tsudik, G.: Mixing E-mail with Babel. In: Proceedings of the Symposium on Network and Distributed System Security, pp. 2–16. IEEE (1996)Google Scholar
  19. 19.
    Jindal, P., Singh, B.: Performance analysis of modified RC4 encryption algorithm. In: Recent Advances and Innovations in Engineering (ICRAIE), pp. 1–5. IEEE (2014)Google Scholar
  20. 20.
    Heron, S.: Advanced encryption standard (AES). Netw. Secur. 2009(12), 8–12 (2009)CrossRefGoogle Scholar
  21. 21.
    Wong, M.M., Wong, M.L.D., Nandi, A.K., Hijazin, I.: Composite field GF(((22)2)2) advanced encryption standard (AES) S-box with algebraic normal form representation in the subfield inversion. IET Circuits Devices Syst. 5(6), 471–476 (2011)CrossRefGoogle Scholar
  22. 22.
    Masoumi, M., Rezayati, M.H.: Novel approach to protect advanced encryption standard algorithm implementation against differential electromagnetic and power analysis. IEEE Trans. Inf. Forensics Secur. 10(2), 256–265 (2015)CrossRefGoogle Scholar
  23. 23.
    Bouillaguet, C., Derbez, P., Dunkelman, O., Fouque, P.A., Keller, N., Rijmen, V.: Low-data complexity attacks on AES. IEEE Trans. Inf. Theory 58(11), 7002–7017 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wong, M.M., Wong, M.L.D., Nandi, A.K., Hijazin, I.: Construction of optimum composite field architecture for compact high-throughput AES S-boxes. IEEE Trans. Very Large Scale Integr. VLSI Syst. 20(6), 1151–1155 (2012)CrossRefGoogle Scholar
  25. 25.
    Kim, C.H.: Improved differential fault analysis on AES key schedule. IEEE Trans. Inf. Forensics Secur. 7(1), 41–50 (2012)CrossRefGoogle Scholar
  26. 26.
    Wang, Y., Ha, Y.: A performance and area efficient ASIP for higher-order DPA-resistant AES. IEEE J. Emerg. Sel. Top. Circuits Syst. 4(2), 190–202 (2014)CrossRefGoogle Scholar
  27. 27.
    Mozaffari-Kermani, M., Reyhani-Masoleh, A.: A lightweight high-performance fault detection scheme for the advanced encryption standard using composite fields. IEEE Trans. Very Large Scale Integr. VLSI Syst. 19(1), 85–91 (2011)CrossRefGoogle Scholar
  28. 28.
    Farhadian, A., Aref, M.R.: Efficient method for simplifying and approximating the s-boxes based on power functions. IET Inf. Secur. 3(3), 114–118 (2009)CrossRefGoogle Scholar
  29. 29.
    Farhadian, A., Aref, M.R.: Efficient method for simplifying and approximating the s-boxes based on power functions. IET Inf. Secur. 3(3), 114–118 (2009)CrossRefGoogle Scholar
  30. 30.
    Kim, C.H., Quisquater, J.J.: Faults, injection methods, and fault attacks. IEEE Des. Test Comput. 24(6), 544–545 (2007)CrossRefGoogle Scholar
  31. 31.
    Jamil, T.: The Rijndael algorithm. IEEE Potentials 23(2), 36–38 (2004)CrossRefGoogle Scholar
  32. 32.
    Daemen, J., Rijmen, V.: The first 10 years of advanced encryption. IEEE Secur. Priv. 8(6), 72–74 (2010)CrossRefGoogle Scholar
  33. 33.
    Çavuşoğlu, Ü., Zengin, A., Pehlivan, I., Kaçar, S.: A novel approach for strong S-Box generation algorithm design based on chaotic scaled Zhongtang system. Nonlinear Dyn. 87(2), 1081–1094 (2017)CrossRefGoogle Scholar
  34. 34.
    Xu, T., Liu, F., Wu, C.: A white-box AES-like implementation based on key-dependent substitution-linear transformations. Multimed. Tools Appl., 1–21 (2017)Google Scholar
  35. 35.
    Lambić, D.: A novel method of S-box design based on discrete chaotic map. Nonlinear Dyn. 87(4), 2407–2413 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Farah, T., Rhouma, R., Belghith, S.: A novel method for designing S-box based on chaotic map and Teaching–Learning-Based Optimization. Nonlinear Dyn. 88(2), 1059–1074 (2017)CrossRefGoogle Scholar
  37. 37.
    Baek, C.H., Cheon, J.H., Hong, H.: White-box AES implementation revisited. J. Commun. Netw. 18(3), 273–287 (2016)CrossRefGoogle Scholar
  38. 38.
    Mazumdar, B., Saeed, S.M., Ali, S.S., Sinanoglu, O.: Timing attack and countermeasure on NEMS relay based design of block ciphers. IEEE Trans. Emerg. Top. Comput. 5(3), 317–328 (2017)CrossRefGoogle Scholar
  39. 39.
    Shan, W., Zhang, S., He, Y.: Machine learning based side-channel-attack countermeasure with hamming-distance redistribution and its application on advanced encryption standard. Electron. Lett. 53(14), 926–928 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity College of Engineering KanchipuramKanchipuramIndia

Personalised recommendations